#### Energy 55 (2013) 564-570

Contents lists available at SciVerse ScienceDirect

# Energy

journal homepage: www.elsevier.com/locate/energy

# Chemical effect of hydrogen peroxide addition on characteristics of methane—air combustion



Autobic ortine at

Guan-Bang Chen<sup>a,\*</sup>, Yueh-Heng Li<sup>a</sup>, Tsarng-Sheng Cheng<sup>b,\*\*</sup>, Yei-Chin Chao<sup>c</sup>

<sup>a</sup> Research Center for Energy Technology and Strategy, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan, ROC
<sup>b</sup> Department of Mechanical Engineering, Chung Hua University, No. 707, Sec. 2, Wufu Road, Hsinchu, 300, Taiwan, ROC
<sup>c</sup> Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan, ROC

#### ARTICLE INFO

Article history: Received 29 October 2012 Received in revised form 25 March 2013 Accepted 26 March 2013 Available online 24 April 2013

Keywords: Hydrogen peroxide Lean combustion Catalytic decomposition Numerical simulation

#### ABSTRACT

The effects of hydrogen peroxide addition on the reaction pathway of premixed methane/air flames are numerically investigated using the PREMIX code with the GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. Hydrogen peroxide is used as the oxidizer substituent of air. Results show that the laminar burning velocity and adiabatic flame temperature of premixed methane—air flame are significantly increased with H<sub>2</sub>O<sub>2</sub> addition. The addition of hydrogen peroxide increases not only all the reaction rates of intermediate species, but also the concentrations of intermediate species. The traditional reaction pathways of CH<sub>4</sub>/air flame are altered by the addition of hydrogen peroxide, due to the enhanced production of OH and HO<sub>2</sub>. The enhanced OH radicals promote HO<sub>2</sub> productions through reaction (R89). The increased HO<sub>2</sub> accelerates the progressive reaction of CH<sub>3</sub> to form CH<sub>3</sub>O and then CH<sub>2</sub>O.

© 2013 Elsevier Ltd. All rights reserved.

# 1. Introduction

Plenty of flame-stabilized strategies have been investigated and applied in macro- and micro-scale combustion systems for decades [1]. For example, coaxial dump combustor [2] and swirler [3,4] are extensively utilized in combustion systems to increase flow residence time as well as fuel-air mixing, and hence to improve flame stability by means of flow structure modification. Besides, heat exchanger [5], flue gas recirculation mechanism [6] and turbocharger [7] are generally applied in engines and furnaces to increase temperature and pressure in the flow field and to extend flammability limits. On the other hand, by employing catalyst to accelerate chemical reaction [8,9] or by imposing microwave [10] or plasma [11] to induce active chemical radicals (H, OH) in flames are also the well-known strategies to improve combustion behavior. Nevertheless, these approaches result in extra expenses for assembling additional mechanical auxiliaries in combustion system and retrofitting the mechanical design of combustor configuration. Besides, the operational procedure of the retrofitted combustion system and the optimum operating range of the combustor are also needed to be re-modified.

In order to minimize the modification of combustion system, an attractive alternative is to employ active fuels such as hydrogen or to add strong oxidants such as hydrogen peroxide to fuels to enhance combustion. Accordingly, the addition of hydrogen [12-14], hydrogen peroxide [15,16] or nitrous oxide [17,18] in hydrocarbon fuels has received increasing attention recently. Wang et al. [12] numerically studied the effect of hydrogen addition on methane-air mixture combustion. They found that the mole fractions of major species, CH<sub>4</sub>, CO, and CO<sub>2</sub>, are decreased and the production rates of the dominant reactions contributing to these major species are increased remarkably as hydrogen is added. Wang et al. [13,14] experimentally investigated the effects of hydrogen addition on combustion and emission performance of a spark-ignited gasoline engine. They found that flame development and propagation periods of the gasoline engine are shortened with the increase of hydrogen blending ratio. The measured tailpipe HC, CO, and CO<sub>2</sub> emissions are reduced whereas the NO<sub>x</sub> emissions are increased with hydrogen addition. Among these energetic additives, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is particularly an environmentally friendly oxidant with strong oxidability and it appears as liquid state in normal temperature with benefits of easy-to-store and recharging.

A few recent studies have indicated that hydrogen peroxide is a promising additive for improving practical combustion process



<sup>\*</sup> Corresponding author. Tel.: +886 6 2757575x51030; fax: +886 6 2095913.

<sup>\*\*</sup> Corresponding author. Tel.: +886 3 5186489; fax: +886 3 5186521.

*E-mail addresses*: gbchen26@gmail.com (G.-B. Chen), tscheng@chu.edu.tw (T.-S. Cheng).

<sup>0360-5442/\$ –</sup> see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.energy.2013.03.067

[19–22]. Golovitchev et al. [19,20] found that the improvement of methane auto-ignition with hydrogen peroxide addition is much stronger than that with hydrogen. Kim et al. [21] and Martinez et al. [22] discovered that the presence of hydrogen peroxide could evidently reduce the concentration of unburnt hydrocarbons, CO and NO<sub>x</sub>. Furthermore, Ting and Reader [15] as well as Chen et al. [16] numerically investigated the effects of hydrogen peroxide on the premixed methane-air flame under various concentrations of H<sub>2</sub>O<sub>2</sub> additions. They found that the adiabatic temperature and laminar burning velocity of the premixed methane-air flames are increased due to the increase of OH, H, and O radical concentrations. It is conjectured that the existence of hydrogen peroxide leads to the shift of chemical reaction pathways, and to further produce chemical radicals. In order to further understand the flame structure of methane-air flame with hydrogen peroxide addition and the roles of hydrogen peroxide on methane reactions, the reaction pathways under the condition of partial replacement of air with hydrogen peroxide are investigated.

# 2. Numerical model and chemical mechanism

In this study, the adiabatic, unstrained, free propagation velocities of the laminar premixed CH<sub>4</sub>/air/H<sub>2</sub>O<sub>2</sub> flames are calculated by the PREMIX code of CHEMKIN Collection. The PREMX code solves the equations governing steady, isobaric, quasi-one-dimensional flame propagation. For a freely propagating flame, the mass flow rate is an eigenvalue and must be determined as part of the solution. An additional constraint is required and a flame-fixed coordinate system is established by fixing the temperature at 500 K. Temperature and species gradients at the boundaries should be avoided to obtain the accurate flame speed. It means that the boundaries should be sufficiently far from the flame. In this work, the adiabatic flame temperature is calculated by the EQUIL code of CHEMKIN Collection. An initial reactant mixture is specified with the constraints of constant enthalpy and constant pressure. To obtain accurate adiabatic flame temperature, besides reactants and products, all radical species that might occur in the flame are also included.

The GRI-Mech 3.0 mechanism composing of 53 chemical species and 325 reaction steps is used for the  $CH_4/air/H_2O_2$  flame calculations. Detailed thermal and transport properties are also included. This mechanism has been used satisfactorily to simulate noncatalytic  $H_2O_2$  decomposition [23]. The reaction rate constant is represented by the modified Arrhenius expression,

$$k = \overline{A}T^{b}\exp\left(\frac{-E_{a}}{RT}\right)$$
(1)

where  $\overline{A}$  is the pre-exponential factor, *b* is the temperature exponent, and  $E_a$  is the activation energy. The chemical kinetics with CHEMKIN format is used in the code. Details of the chemical reaction rate formulation and CHEMKIN format can be found in the user's manual [24].

At the inlet boundary, the unburned reactants are supplied at 423 K and 1 atm. This selected temperature is the boiling temperature of  $H_2O_2$  and it is assumed that all reactants at this temperature are in gas phase. Hydrogen peroxide is used as the oxidizer substituent by partial replacement of air. One mole  $H_2O_2$  can be decomposed to produce half mole  $O_2$  and 1 mol  $H_2O$ . Therefore, the global reaction for the stoichiometric  $CH_4/H_2O_2$  mixture is defined as:

$$CH_4 + 4H_2O_2 \rightarrow CO_2 + 6H_2O$$
 (2)

In the case of using  $H_2O_2$  to replace partial air, the total amount of  $O_2$  is maintained to keep the constant fuel/oxidizer ratio. Therefore, the reduced  $O_2$  from air is supplied from the decomposed  $H_2O_2$ . For the stoichiometric condition, the global reaction is defined as:

CH<sub>4</sub> + 4
$$\beta$$
H<sub>2</sub>O<sub>2</sub> + (2 − 2 $\beta$ )(O<sub>2</sub> + 3.76N<sub>2</sub>) → CO<sub>2</sub> + (4 $\beta$  + 2)H<sub>2</sub>O  
+ 3.76(2 − 2 $\beta$ )N<sub>2</sub> (3)

where  $\beta$  is the replacement percentage of air by H<sub>2</sub>O<sub>2</sub>. The reduction of air also leads to reduction of N<sub>2</sub> in the oxidizer stream.

In order to validate the setting of boundary conditions and the chemical mechanisms used in the present study, we calculated the laminar burning velocity of premixed methane—air flame with 20% additions of hydrogen peroxide in the range of equivalence ratios from 0.6 to 1.1. The results are compared with those calculated by Ting and Reader [15] as shown in Fig. 1. We found that the agreements between both results are very good. These results verify the correct setting of boundary conditions and the suitable chemical mechanisms used in the present study.

# 3. Results and discussion

# 3.1. Characteristics of CH<sub>4</sub>/air/H<sub>2</sub>O<sub>2</sub> flame

To examine the effects of H<sub>2</sub>O<sub>2</sub> on premixed methane flames, the numerical results of premixed stoichiometric CH<sub>4</sub>/air and CH<sub>4</sub>/50% air + 50% H<sub>2</sub>O<sub>2</sub> are compared for illustration. Fig. 2 shows the resultant temperature and some of the important species concentration profiles. With 50% of air replaced by hydrogen peroxide, the adiabatic flame temperature increases approximately by 400 K due to the reduction of nitrogen dilution and heat release from thermal decomposition of hydrogen peroxide. For pure air case, the reactant CH<sub>4</sub> is completely consumed within 1.0 mm of the spatial coordinate but 0.78 mm for the 50% H<sub>2</sub>O<sub>2</sub> replacement case. Hydrogen peroxide enhances methane consumption. In addition, the H<sub>2</sub>O<sub>2</sub> decomposition results in an increase of H<sub>2</sub>O production. The addition of hydrogen peroxide significantly increases CO formation, but produces similar amount of CO<sub>2</sub>. Fig. 2 also shows that the mole fraction of OH, H and O increases with increasing hydrogen peroxide addition. Especially, the increasing trends of HO<sub>2</sub>, HCO,

**Fig. 1.** Comparison of the calculated laminar burning velocity of premixed methane/air flames with 20% addition of  $H_2O_2$  in the range of equivalence ratios from 0.6 to 1.1 with those predicted by Ting and Reader [15].





**Fig. 2.** Effect of hydrogen peroxide addition on temperature and species concentration of stoichiometric  $CH_4/air/H_2O_2$  flames. The solid lines are for  $CH_4/100\%$  air and the dashed lines represent  $CH_4/50\%$  air + 50%  $H_2O_2$ .

 $CH_2O$  and  $CH_3O$  are more significant. These facts suggest that the dominant reactions of methane combustion are altered by  $H_2O_2$  addition. Hydrogen peroxide decomposition increases the active radicals, enhances the reaction rate, and then accelerates the laminar burning velocity.

#### 3.2. Burning velocity of $CH_4/air/H_2O_2$ flame

Fig. 3 shows the effect of replacement of air with  $H_2O_2$  on the laminar burning velocity and adiabatic flame temperature at the stoichiometric condition. It can be seen that the laminar burning velocity is increased with increasing the percentage of hydrogen peroxide addition. The laminar burning velocity is about 0.71 m/s

for the stoichiometric CH<sub>4</sub>/air flame at an inlet temperature of 423 K and it is increased to about 2.1 m/s with 50% of air replaced by H<sub>2</sub>O<sub>2</sub>. When air is completely replaced by H<sub>2</sub>O<sub>2</sub>, the laminar burning velocity approaches 4.7 m/s. This significant increase is because that the oxidizer is completely provided from decomposition of hydrogen peroxide and hydrogen peroxide dominates the reaction rate of methane oxidation. Fig. 3 also shows that the adiabatic flame temperature increases with increasing the percentage of H<sub>2</sub>O<sub>2</sub> addition. The maximum temperature increase is up to 520 K when air is completely replaced by H<sub>2</sub>O<sub>2</sub>. The increase of adiabatic temperature is primarily due to heat release from hydrogen peroxide decomposition. The maximum heat release rate is about  $6.09 \times 10^9$  J/m<sup>3</sup> s for stoichiometric CH<sub>4</sub>/air flame. For the case of stoichiometric  $CH_4/50\%$  air + 50% H<sub>2</sub>O<sub>2</sub> flame, the maximum heat release rate is about  $5.42 \times 10^{10}$  J/m<sup>3</sup> s which is almost 9 times higher than that of stoichiometric  $CH_4$ /air flame. When the air is completely replaced by  $H_2O_2$ , the maximum heat release rate can even reach to  $4.49 \times 10^{11} \text{ J/m}^3 \text{ s}$  which is about two-order of magnitude higher than that for stoichiometric CH<sub>4</sub>/air flame. It is apparent that the decomposition of H<sub>2</sub>O<sub>2</sub> dominates the heat release and then increases the adiabatic flame temperature.

In order to understand the effect of chemical reaction on the flame speed of  $CH_4/air/H_2O_2$  flames, the first-order sensitivity analysis of laminar burning velocity is shown in Fig. 4 for different reactant compositions at stoichiometric condition. In the case of pure air, the dominant reactions for laminar burning velocity are,

$$O_2 + H \leftrightarrow O + OH \tag{R38}$$

$$H + CH_3 + M \leftrightarrow CH_4 + M \tag{R52}$$

$$OH + CO \leftrightarrow H + CO_2$$
 (R99)

For the hydrogen peroxide replacement cases, the dominant reactions shift to the following reaction steps:

$$O_2 + H \leftrightarrow O + OH \tag{R38}$$

$$20H + M \leftrightarrow H_2O_2 + M \tag{R85}$$

$$OH + H_2O_2 \leftrightarrow HO_2 + H_2O \tag{R89}$$

$$OH + CH_4 \leftrightarrow CH_3 + H_2O \tag{R98}$$







Fig. 4. Sensitivity analysis of laminar burning velocity for stoichiometric  $CH_4/air/H_2O_2$  flames.

Among these reactions, (R85) and (R89) are the most important chemical reactions. Hydrogen peroxide promotes the production of OH radicals, modifies the reaction pathway, and enhances the reaction rate leading to the increase of flame speed.

#### 3.3. Production rate of intermediate species

The effects of  $H_2O_2$  on the major species and OH radical of the  $CH_4/air/H_2O_2$  premixed flames have been discussed in our previous paper [16]. In the present study, the dominant reactions for the intermediate species (O, H, HO<sub>2</sub>, HCO, CH<sub>3</sub>O and CH<sub>2</sub>O) in CH<sub>4</sub>/air/H<sub>2</sub>O<sub>2</sub> premixed flames are further analyzed. These species are crucial to clearly reveal the reaction pathway in CH<sub>4</sub>/air/H<sub>2</sub>O<sub>2</sub> flames.

Fig. 5 shows the production rate of H for  $CH_4/air$  and  $CH_4/50\%$  air + 50%  $H_2O_2$  flames at stoichiometric condition. With hydrogen peroxide addition, some of the main reactions are enhanced and shifted in axial position. Reactions (R46) and (R57) are evidently increased. The dominated reaction for H production is

$$OH + H_2 \leftrightarrow H + H_2O$$
 (R84)

Since OH is significantly increased by  $H_2O_2$ , it then assists in yielding H from reaction (R84). However, the dominant reaction for H consumption is

$$O_2 + H \leftrightarrow O + OH \tag{R38}$$

In Fig. 5 it is obvious that all the main reactions are enhanced by hydrogen peroxide addition. Fig. 6 shows the production rate of O for two different flames at stoichiometric condition. With hydrogen peroxide addition, the main reactions of O are not altered. Nonetheless, the rates of dominant reaction steps are enhanced and the total production rate of O is also increased. The dominant reactions for O production is

$$O_2 + H \leftrightarrow O + OH \tag{R38}$$

And the main O consumption reactions are



Fig. 5. Effect of  $H_2O_2$  on H production rate for  $CH_4/air$  and  $CH_4/50\%$  air  $+\,50\%$   $H_2O_2$  flames at stoichiometric condition.



Fig. 6. Effect of  $H_2O_2$  on O production rate for  $CH_4/air$  and  $CH_4/50\%~air+50\%~H_2O_2$  flames at stoichiometric condition.

$$O + H_2 \leftrightarrow H + OH$$
 (R3)

$$O + CH_3 \leftrightarrow H + CH_2O \tag{R10}$$

The chain branching reaction (R38) is one of the most important reactions in combustion process.

Fig. 7 shows the HO<sub>2</sub> production rate for two different flames at stoichiometric condition. For the  $CH_4/air$  flames, the dominant reactions for the production and consumption of HO<sub>2</sub> are (R168) and (R46), respectively.



Fig. 7. Effect of  $H_2O_2$  on  $HO_2$  production rate for  $CH_4/air$  and  $CH_4/50\%$  air + 50%  $H_2O_2$  flames at stoichiometric condition.

$$O_2 + HCO \leftrightarrow HO_2 + CO \tag{R168}$$

$$H + HO_2 \leftrightarrow 2OH$$
 (R46)

When 50% of air is replaced by hydrogen peroxide, all the major reactions and the total production rate are greatly increased. The dominant reaction for  $HO_2$  production is shifted from (R168) to (R89).

$$OH + H_2O_2 \leftrightarrow HO_2 + H_2O \tag{R89}$$

Hydrogen peroxide promotes the production of  $HO_2$ . In addition to reaction (R46), the other dominant reaction for  $HO_2$  consumption is reaction (R116).

$$2HO_2 \leftrightarrow O_2 + H_2O_2 \tag{R116}$$

Fig. 8 compares the CH<sub>3</sub>O production rate for two different flames at stoichiometric condition. Similarly to the previous intermediate species, the existence of  $H_2O_2$  promotes the main reactions and the total reaction rates substantially. The dominant reactions for CH<sub>3</sub>O production and consumption are (R119) and (R57), respectively,

$$HO_2 + CH_3 \leftrightarrow OH + CH_3O \tag{R119}$$

$$CH_3O + M \leftrightarrow CH_2O + H + M$$
 (R57)

Reaction (R57) is also the dominant reaction for  $CH_2O$  production when hydrogen peroxide is used to replace air (see Fig. 9).

Fig. 9 shows the  $CH_2O$  production rate for two different flames at stoichiometric condition. For the  $CH_4$ /air flame, the dominant reactions of  $CH_2O$  consumption and production are (R58) and (R10), respectively,

$$H + CH_2 O \leftrightarrow H_2 + HCO \tag{R58}$$

$$0 + CH_3 \leftrightarrow H + CH_2 0 \tag{R10}$$

Reaction (R10) is the most important step for CH<sub>3</sub> oxidation to



Fig. 8. Effect of  $H_2O_2$  on  $CH_3O$  production rate for  $CH_4/air$  and  $CH_4/50\%$  air + 50%  $H_2O_2$  flames at stoichiometric condition.



Fig. 9. Effect of  $H_2O_2$  on  $CH_2O$  production rate for  $CH_4/air$  and  $CH_4/50\%$  air + 50%  $H_2O_2$  flames at stoichiometric condition.

form CH<sub>2</sub>O, which belongs to progressive dehydrogenation of CH<sub>4</sub> to CH<sub>3</sub> and then CH<sub>3</sub>O, CH<sub>2</sub>O, HCO, CO and finally to CO<sub>2</sub>. For the CH<sub>4</sub>/50% air + 50% H<sub>2</sub>O<sub>2</sub> flame, hydrogen peroxide enhances reactions (R10) and (R57), but the enhancement of reaction (R57) is more significant than that of reaction (R10). Therefore, the reaction pathway of CH<sub>3</sub> to CH<sub>2</sub>O is changed. The primary path is from CH<sub>3</sub> to CH<sub>3</sub>O and then to CH<sub>2</sub>O. With 50% of H<sub>2</sub>O<sub>2</sub> replacement, the reactions (R10), (R15), (R57), (R58), and (R101) are all enhanced. In addition to reaction (R58), the reaction (R101) is enhanced to become the second important reaction for CH<sub>2</sub>O consumption.

$$OH + CH_2O \leftrightarrow HCO + H_2O$$
 (R101)

The HCO production rate is shown in Fig. 10. For the  $CH_4/air$  flames, the dominant reactions for HCO production and consumption are

$$H + CH_2 O \leftrightarrow H_2 + HCO \tag{R58}$$

$$OH + CH_2O \leftrightarrow HCO + H_2O$$
 (R101)

$$CH + O_2 \leftrightarrow O + HCO$$
 (R125)

$$HCO + H_2O \leftrightarrow H + CO + H_2O \tag{R166}$$

$$HCO + M \leftrightarrow H + CO + M$$
 (R167)

$$O_2 + HCO \leftrightarrow HO_2 + CO \tag{R168}$$

When air is partially replaced by hydrogen peroxide, all the main reactions and the total production rate are increased. Reactions (R166), (R167), and (R168) are also the dominant reactions for CO production. The produced CO is then reacted with OH to form CO<sub>2</sub>.

Finally, the effect of hydrogen peroxide addition on reaction pathways is shown in Fig. 11. The black arrows indicate the traditional dominant  $CH_4/air$  combustion pathways. The red arrows represent the enhanced reaction steps by  $H_2O_2$  addition and the blue dashed lines represent the increased radicals to enhance the



Fig. 10. Effect of  $H_2O_2$  on HCO production rate for  $CH_4/air$  and  $CH_4/50\%$  air + 50%  $H_2O_2$  flames at stoichiometric condition.

dominant reaction steps. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) It has been shown that the addition of hydrogen peroxide increases the productions of OH and HO<sub>2</sub> in CH<sub>4</sub>/air flames [21]. The increased OH radicals promote progressive dehydrogenations of CH<sub>4</sub> to CH<sub>3</sub> and of CH<sub>2</sub>O to HCO, and finally oxidation of CO to CO<sub>2</sub>. In traditional CH<sub>4</sub>/air combustion, CH<sub>2</sub>O is primarily produced from



**Fig. 11.** Effect of H<sub>2</sub>O<sub>2</sub> addition on reaction pathways.

oxidation of CH<sub>3</sub> through reaction (R10). However, with the addition of  $H_2O_2$ , CH<sub>2</sub>O is primarily produced from CH<sub>3</sub>O through reaction (R57). In addition, the increased HO<sub>2</sub> also accelerates CH<sub>3</sub>O production through reaction (R119).

## 4. Conclusions

In the present study, the effects of hydrogen peroxide addition on premixed methane/air flames are numerically investigated with GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. Hydrogen peroxide is used as an oxidizer to replace partial air. The characteristics of laminar burning velocity, adiabatic flame temperature, and production rate of intermediate species (O, H, HO<sub>2</sub>, HCO, CH<sub>2</sub>O and CH<sub>3</sub>O) are studied. The following findings are obtained from this study.

- 1. The laminar burning velocity and adiabatic temperature of premixed CH<sub>4</sub>/air flames are obviously increased with the addition of H<sub>2</sub>O<sub>2</sub>. The dominant reactions for laminar burning velocity are shifted from (R38), (R52), and (R99) to (R38), (R85), (R89), and (R98). In addition, the decomposition of H<sub>2</sub>O<sub>2</sub> dominates the net heat release rate and then affects the adiabatic flame temperature.
- Hydrogen peroxide increases not only the reaction rates, but also the concentrations of intermediate species. The increase of intermediate species then alters the reaction pathway of methane flames.

In CH<sub>4</sub>/air flame, CH<sub>2</sub>O is primarily produced by the oxidation of CH<sub>3</sub> with O. With the addition of H<sub>2</sub>O<sub>2</sub>, the primary reaction pathway is shifted from the progressive reaction of CH<sub>3</sub> to CH<sub>3</sub>O and then to CH<sub>2</sub>O. This difference is primarily due to the substantial increase of HO<sub>2</sub>.

## Acknowledgments

This research was supported by the National Science Council of the Republic of China under the grant number NSC 100-2221-E-216 -012 -MY2.

# References

- [1] Mcmanus KR, Poinsot T, Candel SM. A review of active control of combustion instabilities. Prog Energy Combust Sci 1993;19:1–29.
- [2] Schadow KC, Gutmark E, Wilson KJ. Active combustion control in a coaxial dump combustor. Combust Sci Technol 1992;81:285–300.
- [3] Tangirala V, Chen RH, Driscoll JF. Effect of heat release and swirl on the recirculation with swirl-stabilized flame. Combust Sci Technol 1987;51:77–95.
- [4] Li YH, Chao YC, Amadé NS, Dunn-Rankin D. Progress in minature liquid film combustors: double chamber and central porous fuel inlet designs. Exp Therm Fluid Sci 2008;32:1118–31.
- [5] Jones AR, Lloyd SA, Weinberg FJ. Combustion in heat exchangers. Proc Roy Soc Lond A 1978;360:97–115.
- [6] Mujeebu MA, Abdullah MZ, Abu Bakar MZ, Mohamad AA, Abdullah MK. Applications of porous media combustion technology – a review. Appl Energy 2009;86:1365–75.
- [7] Van den Schoor F, Verplaetsen F. The upper flammability limit of methane/ hydrogen/air mixture at elevated pressure and temperatures. Int J Hydrogen Energy 2007;32:2548–52.
- [8] Cimino S, Lisi L, Pirone R, Russo G, Turco M. Methane combustion on perovskites-based structured catalysts. Catal Today 2000;59:19–31.
- [9] Zhu MM, Ma Y, Zhang DK. An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine. Energy 2011;36:6004–9.
- [10] Stockman ES, Zaidi SH, Miles RB, Carter CD, Ryan MD. Measurements of combustion properties in a microwave enhanced flame. Combust Flame 2009;156:1453–61.
- [11] Vincent-Randonnier A, Larigaldie S, Magre P, Sabel'nikov V. Plasma assisted combustion: effect of a coaxial DBD on a methane diffusion flame. Plasma Sources Sci Technol 2007;16:149–60.

- [12] Wang J, Huang Z, Tang C, Miao H, Wang X. Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int J Hydrogen Energy 2009;34:1084–96.
- [13] Wang S, Ji C, Zhang B. Effects of hydrogen addition and cylinder cutoff on combustion and emissions performance of a spark-ignited gasoline engine under a low operating condition. Energy 2010;35:4754–60.
- [14] Wang S, Ji C, Zhang J, Zhang B. Comparison of the performance of a sparkignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures. Energy 2011;36:5832–7.
- [15] Ting DSK, Reader GT. Hydrogen peroxide for improveing premixed methaneair combustion. Energy 2005;30:313–22.
- [16] Chen GB, Li YH, Cheng TS, Hsu HW, Chao YC. Effects of hydrogen peroxide on combustion enhancement of premixed methane/air flames. Int J Hydrogen Energy 2011;36:15414–26.
- [17] Bame SPM, Mével R, Coronel SA, Shepherd JE. Flame burning speeds and combustion characteristics of undiluted and nitrogen-diluted hydrogen-nitrous oxide mixture. Int J Hydrogen Energy 2011;36: 10107–16.

- [18] Powell OA, Papas P, Dreyer C. Laminar burning velocities for hydrogen-, methane-, acetylene-, and propane-nitrous oxide flames. Combust Sci Technol 2009;181:917–36.
- [19] Golovitchev VI, Pilia ML, Bruno C. Autoignition of methane mixtures: the effect of hydrogen peroxide. J Propul Power 1996;12(4):699–707.
- [20] Golovitchev VI, Chomiak J. Evaluation of ignition improvers for methane autoignition. Combust Sci Technol 1998;135:31–47.
  [21] Kim J, Park J, Goto S. Conversion of nitric oxide to nitrogen dioxide using
- hydrogen peroxide. SAE Paper 2000-01-1931; 2000.
- [22] Martinez AI, Corredor LF, Tamara W. Reduction of combustion emissions using hydrogen peroxide in a pilot scale combustion chamber. In: Proceedings of the 1997 Air and Waste Management Association's 90th annual meeting and exhibition, paper 97–TP30B.01; 1997.
- [23] Sengupta D, Mazumder S, Vernon Cole J, Lowry S. Controlling non-catalytic decomposition of high concentration hydrogen peroxide. CFD Research Corporation; Feb. 2004. Technical report.
- [24] Kee RJ, Rupley FM, Meeks E, Miller JA. Sandia National Laboratories Report SAND96-8216 1996.