

The Development, Design and Demonstration of Vacuum Cathode Arc Thruster (VAT)

真空陰極電弧推進器之發展、設計與測試

Reporter: Jun-You Pan (潘均祐) Advisor: Yueh-Heng Li (李約亨)

Date: 2019/Jan/28

2019 Master Thesis Oral Defence

Satellite Classification

- Large satellite (> 1000Kg)
- Medium-sized satellite (500-1000Kg)
- Small satellite (< 500Kg)</p>
 - Minisatellite (100–500 kg)
 - Microsatellite (10–100 kg)
 - Nanosatellite (1–10 kg)
 - Picosatellite (0.1–1 kg)
 - Femtosatellite (0.01–0.1 kg)

Microsatellite missions

✓ Interplanetary Travel

✓ Orbit transfer

✓ Attitude Control

States of matters

Introduction – Electric Propulsion(EP)

Compared with the conventional chemical propulsion

Specific impulse (
$$I_{sp}$$
) $\equiv \frac{T}{mg} = \frac{\dot{m}V}{mg} = \frac{V}{g}$

where the T is thrust, \dot{m} is mass flow rate of propellant, V is exhausting velocity and g is gravity acceleration constant.

High fuel to thrust rate on propellant

Classification of EP based on ion acceleration mechanism

- ✓ Electrothermal thruster
- ✓ Electrostatic thruster

✓ Electromagnetic thruster

[blog.sina.com.cn]

EX: Resistojets, Arcjets and Vacuum cathode arc thruster

electron gun electron e electron gun electron e positive grid

EX: Ion thruster and Field emission electric thruster

EX: Pulse plasma thruster, Hall thruster and MPD thruster

Vacuum cathode arc thruster (VAT)

> Metal propellant

Specific impulse ranging from 1100s (Ta) to 3000s (Al)

(Dethlefsen, 1968; Gilmour & Lockwood, 1972)

- Triggerless ignition method (Anders *et al.*, 1998)
- Inductor storage energy device
 - (Schein *et al.,* 2002)

[Polk, 2008]

Principle of operation

Principle of triggerless ignition, [Alameda Applied Sciences Corporation]

Ion acceleration mechanism

Plasma acceleration region

✓ High pressure gradient produced from the plasma plume

Electrostatic attraction of the negative

"potential hump"

✓ Electron-ion collision (electrons deliver energy to ions by collision)

George Washington University and University of Southern California

10

Impulse bit = 0.1 μ N·s without B field = 1.1 μ N·s with B = 0.3 T

Thrust = $1 \mu N - 0.05 m N$

Alameda Applied Science Corporation (AASC)

Impulse bit = $1 \mu N \cdot s$

Specific impulse = 1000s

Alameda Applied Science Corporation (AASC)

UWE-4 nanosatellite (German Federal Armed Forces) Lunch date: 2018/12/27

PhoneSat (George Washington University & NASA) Lunch date: 2013/11/20

HORYU nanosatellite (Kyushu Institute of Technology) Lunch date: 2016/2/17

BRICSat-P CubeSat (US Air Force) Lunch date: 2015/5/20

Cluster of Nano Thruster for SmallSats [CubeSatShop]

	VAT	PPT
Power requirement	Low	High
Weight	Light	Heavy
Size	Small	Large

VAT geometry and experimental conditions literature summary

	Cathode properties		Pulse characteristics		
	Geometry (Diameter)	Material	Peak arc current (A)	Discharging time (μs)	
Sekerak	Rod (3 mm)	Ti	14	1500	
Schein <i>et al.</i>	Rod (3 mm)	Cr, Y	10 ~ 25	250 ~ 500	
Schein <i>et al.</i>	Rod (30 mm)	Ti <i>,</i> W	10	100	
Marks <i>et al.</i>	Rod (3 mm)	Cu, Al	50 ~ 250	20000	
Lun	Rod (6 mm)	Bi, Al, Fe	50	4000	
Pietzka <i>et al</i> .	Hollow (4 mm, external)	Cu	10 ~ 50	250 ~ 400	
Zhuang <i>et al.</i>	Hollow (6 mm, external)	Ti	40	400	
Lun	Planar (10 × 16 × 2 mm)	Al	200 ~ 800	0.4	

Design of the Vacuum Cathode Arc Thruster (VAT)

Inductor storage energy device

IGBT = Insulated Gate Bipolar Transistor

□ First stage – power on

Second stage – trigger TTL signal

□ Third stage – Arc discharge

Configuration of vacuum system

Conditions

Parameter	Value
Induce Voltage	Up to 700V
Charge Current	50 A
Discharge Current	48 A
Discharge Voltage	30-40V
Charge Time	800 µs
Discharge Time	300-400 μs
Pressure	10 ⁻⁵ Torr
Resistance	1-1.33 Ω
Inductance	220 µH

Al cathode discharge, 5Hz

Cu cathode discharge, 1Hz

ᆂ

Ion detector

Ion fraction = a ratio of ion current to total current

lon fraction = 7.1%

$$\frac{1}{2}\mathbf{m}\vec{V}^2 = \mathbf{e}\mathbf{V}$$

 \vec{V} = 23150 m/s

Erosion rate and lifetime

After 70,000 pulse

Erosion rate = 0.1µg/pulse

Result analysis

28

$$E = \sum IV\Delta t = 0.233 J$$
,
 $P = E \times f = 0.233 J \times 5 Hz = 1.165 W$

Where E is discharge energy, I is discharge current, V is discharge Voltage, Δt is the time between each data point

Comparison of this study with other VAT performance

	Parameters					
Paper	Supply voltage (V)	Discharge current (A)	Impulse bit (µNs)	Specific impulse (s)	Thrust to power (μN/W)	Efficiency (%)
Aheieva <i>et al.</i>	300	1000	2	1300	-	2.66
Schien <i>et al.</i>	12 ~ 30	26	30	> 1000	9.6	8.1
Schien <i>et al.</i>	24.7	20	1	-	2.2	5.6
Kronhaus <i>et al</i> .	15 ~ 35	11.5	0.11	850	4.4	1.2
Lun <i>et al.</i>	-	< 500	0.01	2400	-	-
Lun <i>et al.</i>	5	30	2.5	-	0.02	13
Schein <i>et al.</i>	5 ~ 24	100	1	1300	-	21
This study	30	50	2.3	2360	8.7	10

CubeSat performance requirements set out by ESA and NSPO

Description	ESA	NSPO, Taiwan	This study
Micro-thruster module dry mass budget, kg	0.15 – 1.0	-	0.11
Number of micro thrusters per CubeSat	1 - 6	-	-
Power required by full assembly, W	1 - 10	< 20	3
Bus voltage, V	5 - 8	< 100	30
Minimum impulse bit, μNs	5	-	2.3
Specific impulse, s	60 - 1000	> 800	2360

Improvement of plasma diagnostic technology

Thruster geometry and size design

Circuit optimization

李約亨教授實驗室 | ZAP LAB Zic and Partners Lab

As our circle of knowledge expands, so does the circumference of darkness surrounding it. — Albert Einstein

Thank you for attention

Yueh-Heng Li (Zic) 李約亨
▲ Associate Professor, Dept. Aeros. & Astros., NCKU, Taiwan yuehheng.li@gmail.com yueheng@mail.ncku.edu.tw
■ ZAP Lab Website: http://59.125.238.48/zaplab/