

Effect of Strain Rate on the Flame Structure of Syngas Flames in the Air-Fuel and Oxy-Fuel Condition 混合燃氣之拉伸極限影響火焰結構特性在空氣及純氧條件之 研究

Report: Jian-Syun Wu (吳建勳) Advisor: Yueh-Heng Li (李約亨)

Date: 2017/Jun/21

2017 Master Thesis Oral Defense

The Energy issues

- Energy issues including fuel shortage and environmental pollutions have remained for several years. A number of strategies for reducing emission and utilizing renewable/clean energy have been investigated and developed.
- Syngas is being recognized as a viable energy source and an attractive fuel, particularly for stationary power generation with IGCC (Integrated Gasification Combined Cycle) Technology.

Synthesis Gas Chemistry and Synthetic Fuels.

> Species characteristics

	Hydrogen (H ₂)	Methane (CH ₄)	Carbon monoxide (CO)
Molecular mass	2	16	28
Density (kg/m ³)	0.09	0.72	1.25
Heat Capacity (J/mole·K)	28.84	35.69	1.04
Heat value (kJ/kg)	119746	49915	10108
Ignition temperature (°C)	571	632	608
Flammability(%)	4-75	5-15	12.5-74
Flame speed (cm/s)	170 @ <i>φ</i> =1	38.3 @ <i>φ</i> =1	28.5 @ <i>φ</i> =1

Laminar premixed flame structure (Mallard & Le Chatelier, 1883)

> Laminar premixed flame divides into two distinct zones: preheat & reaction zone.

張彥呈碩士論文,2010

Hydrogen addition to flame

- The hydrogen addition would lead to an increase of laminar burning velocity and a higher extinction strain rate. (Scholte et al. 1959; Yu et al.1986)
- ► Vagelopoulos et al. (1994) concluded that the increment in laminar burning velocity and extinction strain rate was led by the added H radicals, which would increase branching and accelerate the CO oxidation reaction by investigated the detailed kinetic mechanism using experiment and model prediction for H₂/CO/air and CH₄/CO/air systems.

Gas dilution of flame

- ► Results show that the flame propagation velocity $S_L(Ar) > S_L(N_2) > S_L(CO_2)$ and each thermal diffusivity is $\alpha S_L(Ar) > \alpha S_L(N_2) > \alpha S_L(CO_2)$ and heat capacity $C_p(CO_2) > C_p(N_2) > C_p(Ar)$. (Suda et al. 2007; Masuko et al.2007)
- Suda et al. (2007) revealed that heat capacity of gas seems to have a large effect on flame propagation velocity.
- > Chan et al. (2015) the CO_2 was added, the methane combustion was diluted and the specific heat of the mixture increased, leading to a lower flame temperature and consequently the lower laminar burning velocity.

Comprehensive mechanisms

- > Dominating species: (*Yetter et al. 1991*)
 - High temperature (above 2000K) regime : H, O and OH radicals
 - Low temperature (below 1200K) regime : HO_2 and H_2O_2
 - Intermediate temperature regime: the concentrations of H, O, OH, HO_2 and H_2O_2 intermediates are nearly the same order of magnitude.
- ➢ NO_x could catalyze the reaction of H₂/O₂ and CO/H₂O/O₂ systems at the temperatures below 1200K. (*Mueller et al. 1999*)

Adiabatic flame temperature

Laminar flame velocity

Concentration distribution

Extinction strain rate

Net reaction rate

Wu et al.,2009

- The opposed-jet burner consists of two water cold, well-contoured circular nozzles (ID=2cm) with slow coaxial shielding flows.
- Observed the flame phenomenon by varying the strain rate , equivalence ratio and fuel ratio.
- > Equivalence ratio(ϕ) = 0.4, 0.6, 0.8
- Solution Global strain rate(a) = 200, 300, 400

$$a = \frac{2V_o}{L} \left(1 + \frac{|V_f| \sqrt{\rho_f}}{|V_o| \sqrt{\rho_o}} \right) \text{ unit } : \text{ s}^{-1}$$

> The initial condition : 300 K and 1 atm.

	H	$H_2/CO/CH_4$			$H_2/CO/CH_4$			ϕ				
Flame NO.	Fı	Fuel ratio (%)			Mole fraction(vol%)			Air(vol%)				
	H ₂	СО	CH_4	H ₂	СО	CH_4	0.4	0.6	0.8	1.0		
1	0	20	5	0	64	16	90.2	86.4	82.6	79.2		
2	1	20	5	3.04	61.52	15.36	90.1	86.2	82.4	78.7		
3	2	20	5	5.92	59.28	14.80	90.0	86.1	82.2	75.3		
4	3	20	5	8.56	57.12	14.32	86.1	85.9	82.0	77.9		
5	4	20	5	11.04	55.20	13.76	89.7	85.8	81.9	77.6		
6	5	20	5	13.36	53.36	13.36	89.6	85.6	81.7	77.3		
7	6	20	5	15.52	51.60	12.88	89.5	85.5	81.5	77.0		
8	7	20	5	17.52	50.00	12.48	89.4	85.4	81.4	76.7		
9	8	20	5	19.36	48.48	12.16	89.2	85.2	81.2	76.5		
10	9	20	5	21.20	47.04	11.76	89.1	85.1	81.1	76.3		
11	10	20	5	22.88	45.68	11.44	89.0	85.0	81.0	76.1		

- 12
- > The simulation results were conducted by Chemkin Pro collection.
 - Equil-code
 - Premix-code
 - Oppdif-code
- > The simulation was conducted at the equivalence ratio of 1 for air-fuel and oxy-fuel condition.
- The chemical reaction mechanism use is GRI-Mech 3.0(involves 53 species and 325 reactions).

Mechanism	Species	Reactions	
GRI-mech 3.0	53	325	Methane combustion
USC mechII	111	784	H ₂ /CO/C1~C4 hydrocarbon combustion
Davis <i>et al</i> .	16	30	Specifically for H ₂ /CO combustion
Li	21	93	Be used in CO, CH ₂ O,CH ₃ OH and syngas oxidation
C2	87	367	Predicts a wide range of oxidation properties of H_2 , CH_4 , ethane, ethylene, acetylene and methanol

\succ The initial condition : **300** K and **1** atm.

14

> The oxy-fuel condition $: 32\%O_2 + 68\%CO_2$

	H ₂ /CO/CH ₄		H ₂ /CO/CH ₄		Air	H ₂ /CO/CH ₄			Oxy		
Flame NO.	Fuel composition ratio (%)		Mole fraction(vol%)		(<u>vol</u> %)	Mole fraction(vol%)		<u>(vol</u> %)	(<u>vol</u> %)		
	H ₂	CO	CH_4	H_2	CO	CH_4	$\phi = 1.0$	H_2	CO	CH_4	$\phi = 1.0$
1	0	20	5	0.00	16.63	4.16	79.21	0.00	22.86	5.71	71.43
2	2	20	5	1.57	15.75	3.94	78.74	2.16	21.59	5.40	70.85
3	4	20	5	2.99	14.95	3.74	78.32	4.09	20.46	5.12	70.33
4	6	20	5	4.27	14.23	3.56	77.94	5.83	19.44	4.86	69.87
5	8	20	5	5.43	13.58	3.39	77.59	7.41	18.52	4.63	69.44
6	10	20	5	6.49	12.98	3.25	77.28	8.84	17.68	4.42	69.06
7	12	20	5	7.46	12.44	3.11	76.99	10.15	16.91	4.23	68.71
8	14	20	5	8.35	11.94	2.98	76.73	11.35	16.21	4.05	68.39
9	16	20	5	9.18	11.47	2.87	76.48	12.45	15.56	3.89	68.09
10	18	20	5	9.94	11.04	2.76	76.26	13.47	14.97	3.74	67.82
11	20	20	5	10.65	10.65	2.66	76.05	14.41	14.41	3.60	67.57

The main characteristic for oxy-fuel condition is that the carbon oxide greatly affected the heat capacity.

Laminar Flame Velocity

Extinction Strain Rate

• The hydrogen addition would lead to an increase of higher extinction strain rate.

Concentration Distribution—Air-fuel condition ER=1.0, a=3700s⁻¹, 0%H, ER=1.0, a=200s⁻¹, 0%H, Strain rate : 200 , 3700s⁻¹ 0.008 _____ 0.015 0.007 0.006 0.012 Hydrogen : 0% Mole fraction OH Mole fraction H 0.005 0.009 0.004 0.003 0.006 \cap 0.002 0.003 OH 0.001 CH₂ CH₂ $C_2H_2(x10^3)$ $C_{2}H_{2}(x10^{3})$ 2400 2000 <u>.</u> 0.2 0.2 0, T(+) O_2 T(→) 2000 Temperature(K) **Temperature(K)** 1600 CO CO 0.15 0.15 Mole fraction Mole fraction CO CO. 1600 1200 0.1 1200 H,O $H_{2}O$ 800 CH₄ CH₄ 800 0.05 0.05 H_{2} H 400 400 0.97 0.4 0.5 0.6 0.7 0.8 0.9 0.94 0.95 0.96 0.98 0.99 Distance(cm) Distance(cm)

Concentration Distribution—Air-fuel condition

- Strain rate : near extinction
- ≻ Hydrogen : 0%, 10%

Femperature(K)

H radicals has increased dramatically along with the H_2 addition.

- > Strain rate : near extinction
- ≻ Hydrogen : 10%, 20%
 - Compared 10% to 20%
 hydrogen addition, H radical
 both are similar in 0.012.

Net reaction rate — Air-fuel condition

Net reaction rate — Air-fuel condition

Net reaction rate — Air-fuel condition

Net reaction rate — Oxy-fuel condition

Extinction strain rate issue

> Extinction strain rate issue

- Oxy-fuel condition :
 - Strain rate =4100~10000s⁻¹ \rightarrow Concentration, Chemical effect
 - Strain rate =10000~16000s⁻¹ \rightarrow Concentration, Chemical effect

李約亨教授實驗室 | ZAP LAB Zic and Partners Lab

As our circle of knowledge expands, so does the circumference of darkness surrounding it. — Albert Einstein

Thank you for attention

Yueh-Heng Li (Zic) 李約亨 ■ Associate Professor, Dept. Aeros. & Astros., NCKU, Taiwan yuehheng.li@gmail.com yueheng@mail.ncku.edu.tw ■ ZAP Lab Website: http://59.125.238.48/zaplab/