

Oxygen Enrichment Combustion in Fluidized Bed with Optimal Torrefied Woody-Wastes

Presenter: Wei-Chieh Kuo

Advisor: Yueh-Heng Li

Date:2019/06/25

Dept. of Aeronautics and Astronautics, NCKU

Background

- 2
 - The reserve amount of coal is sufficient to meet 132 years
 - The reserve amount of natural gas is sufficient to meet 50.9 years

Consumption of coal

¹BP Global, https://www.bp.com

Background

- 3
- 2030, greenhouse gas emissions reduce 50% (BAU)
- In 2025, the government has set a policy goal of 50% of natural gas and 20% of renewable energy

➤Waste-to-energy

The process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source³.

Advantages⁴

- ✓ To decrease quantity of waste
- Nearly all biodegradable wastes are biomass
- ✓ To provide better control over odor and noise

Disadvantages

- To result in the contamination in the environment
- Waste-to-energy facilities are expensive to construct

³www.ema.gov.sg ⁴Luke Makarichi, The evolution of waste-to-energy incineration: A review (2018)

Pretreatment – Torrefaction

✓ Temperature between 200 – 300°C
 ✓ In an inert or limited oxygen environment
 ✓ C_nH_mO_p + Heat → Char + CO + CO₂ + H₂O + condensable vapor + ...

Torrefied biomass⁵

- ✓ Reduce H/C & O/C ratios
- ✓ Enhance energy density
- ✓ Increase grindability

Enhance hydrophobicity

⁵Basu, "Biomass Gasification, Pyrolysis and Torrefaction-Practical Design and Theory." Published by Elsevier Inc. (2013)

6

Fixed grate furnace

Rotary kiln furnace

Moving grate furnace Fluidized bed furnace

7

Comparison between moving grate furnace and fluidized bed furnace

Feature	Moving grate furnace	Fluidized bed furnace	
		Circulated through	
FIOW OJ SOIIA JUEI	Transported on grate	combustion chamber	
Combustion zone	On the grate	Entire combustion zone	
Excess air control	Difficult	Possible	
Various fuel applicability	Fair	High	
SO _x control	Difficult	Possible	
NO _x control	Difficult	Possible	

Fluidized bed

8

A type of combustion device in which a gas enters from the bottom of the burner into a reaction zone in which solid particles are suspended and combustion is completed there between.

➢Oxygen enhanced combustion⁶

The process of burning a fuel using higher oxygen concentration.

Advantages

- Increased productivity
- ✓ Higher thermal efficiency
- ✓ Higher energy density
- ✓ Lower exhaust gas volumes

Disadvantages

- ✓ Air separation unit for oxygen production is expensive
- Needs of high heat resistant instruments

⁶H. I. Mathekga B. O. Oboirien, A review of oxy-fuel combustion in fluidized bed reactors (2016)

Literature review

11

- Oxygen enhanced in Fluidized Bed
- ✓ Air enrichment in the atmosphere augments SO₂ and NO emission and reduces CO emission⁷
- ✓ As O_2 concentration increases, combustion efficiency is improved⁷
- ✓ High percentage of CO_2 and H_2O in the combustion gases can reduce the volume of flue gas emitted from power plant by 80%⁸
- ✓ Combustion activities is weaken as the oxygen concentration exceeds
 40%⁹

⁸Terry Wall, An overview on oxyfuel coal combustion—State of the art research and technology development (2009)

⁹Siyi Luo, Bo Bo Xiao, Zhiquan Hu, Shiming Liu, Yanwen Guan, Experimental study on oxygen-enriched combustion of biomass micro fuel (2009)

⁷Lunbo Duan, Changsui Zhao, Wu Zhou, Chengrui Qu, Xiaoping Chen, O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed (2011)

Literature review

Oxygen lancing

- ✓ No modifications to the existing air/fuel burner¹⁰
- NO_x emissions are lower compared to premixing¹⁰
- ✓ Flame shape may be lengthened by staging the combustion reactions¹⁰
- ✓ The lower the second air injection position, the higher the circulating rate¹¹
- ✓ With proper selection of the oxygen lancing area, lancing can improve unit operation and reduce CO emission¹²

¹⁰Charles E. Baukal Jr., "Oxygen-Enhanced Combustion." Published by CRC Press. (2013)

¹¹Weijia Zheng, The effect of the secondary air injection on the gas-solid flow characteristics in the circulating fluidized bed (2018) ¹²Corna, The use of oxygen in biomass and waste-to-energy plants: a flexible and effective tool for emission and process control (2010)

Motivation

- Develop waste-to-energy technology
- Higher combustion efficiency
- Lower cost

Objective

Biomass characteristic optimization

Energy Yield Index

Proximate Analysis-based Index

Effective Combustion Comprehensive Index

Biochar combustion optimization

Total Fluidized Bed Efficiency

Volatile Combustion Ratio

Experimental apparatus

15

Heating value : 4400 Kcal/Kg

Experimental apparatus-Torrefaction system

- Sample: Alee trees
- Size : < 2.83 mm

Experimental apparatus-Calorimeter

• About 1 g of materials is used

17

By measuring the rising
temperature of the calorimeter
and the water inside, we can
get the total heat release after
combustion.

Calorimeter (Parr 6200)

$$Energy \ Yield = \frac{\text{mass of product } \times HV \text{ of product}}{\text{mass of biomass feed } \times HV \text{ of feed}} \times 100\%$$

Experimental apparatus-Thermogravimetric analysis

- Model: Perkin Elmer (STA8000)
- Sample: Alee tree biochar

- Size: smaller than 74 μm
- Heating rate: 20 °C/min
- Carry gas flow rate: 50 ml/min

$$PA = \frac{VM \times FC}{M \times Ash}$$

Experimental apparatus-Thermogravimetric analysis

- Ignition temperature(T_{i1}&T_{i2})
 was calculated by intersection
 method
- Burnout temperature(T_b) is identified at the temperature where the fuel conversion (α) reached 99%¹³

$$\alpha = \frac{W_i - W}{W_i - W_f} \times 100\%$$

¹³Jau-Jang Lu, Wei-Hsin Chen, Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis (2015)

Experimental apparatus-Thermogravimetric analysis

Combustion characteristic index (S)¹⁴
 represents the level of combustion
 performance of solid fuels

$$S = \frac{(\frac{dW}{dt})_{max} \cdot (\frac{dW}{dt})_{mean}}{T_i^2 \cdot T_b}$$

 $(\frac{dw}{dt})_{max}$: maximum mass-loss rate $(\frac{dw}{dt})_{mean}$: average mass-loss rate

 Effective Combustion characteristic index (S_{mix})

$$S_{mix} = S_1 \times \frac{W_1}{W_1 + W_2} + S_2 \times \frac{W_2}{W_1 + W_2}$$

Experimental apparatus-Bubbling fluidized bed reactor

Experimental apparatus-Taguchi method

• Orthogonal array

Experiments which give much reduced variance for the experiment with optimum settings of control parameters.

Orthogonal array $L_9(3^4)$

Series of Experiment	Factor 1	Factor 2	Factor 3	Factor 4
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

• S/N ratio

$$S/N = -10\log\left[\frac{1}{n}\sum_{i=1}^{n}\frac{1}{y_i^2}\right]$$

n: the number of tests y_i : the value of the indicators

81 sets >9 sets

Experiment procedure

Results and Discussion-Biomass optimization

24

Temperature	NO.	Temperature (°C)	Residence Time (min)	Carrier Gas Flow Rate (cc/min)	Sample	Size (mm)	Heating rate (°C/min)	Weight (mg)
• 220 °C	1	200 200	20 40	30 50				
• 240 °C	3	200	60	70				
• 260 °C	4	220	20	30]			
• 280 °C	5	220	40	50				
• 300 °C	6	220	60	70				
Resident	7	240	20	50	- 1			
	8	240	40	70				
TIME	9	240	60	30	Alee	<2.83	20	15
• 20 min	10	260	20	70	Trees			
• 40 min	11	260	40	30				
• 60 min	12	260	60	50				
	13	280	20	50				
N2 Flow Rate	14	280	40	70				
	15	280	60	30				
	16	300	20	70				
• 30 ml/min	17	300	40	30				
• 50 mi/min	18	300	60	50				

• 70 ml/min

Taguchi's Orthogonal Arrays – $L_{18}(6^1 \times 3^6)$

Results and Discussion-Biomass optimization

	EY Index			S _{mix} Index			PA Index		
	Temp. (°C)	Res. Time (min)	N ₂ Flow Rate (ml/min)	Temp. (°C)	Res. Time (min)	N ₂ Flow Rate (ml/min)	Temp. (°C)	Res. Time (min)	N ₂ Flow Rate (ml/min)
L1	-0.713	-2.554	-2.672	25.017	42.313	42.117	36.747	96.427	99.887
L2	-0.651	-2.793	-2.463	24.987	41.887	41.487	43.710	100.823	98.770
L3	-0.824	-2.360	-2.572	26.483	42.380	42.977	48.290	103.387	101.980
L4	-1.287	-	-	22.290	-	-	54.753	-	-
L5	-1.844	-	-	19.727	-	-	56.957	-	-
L6	-2.389	-	-	8.077	-	-	60.180	-	-
S/N difference	1.739	0.433	0.209	18.407	0.493	1.490	23.433	6.960	3.210
Ideal	220	60	50	240	60	70	300	60	70

26

Bed Temp. • 550°C	No.	Bed Temp.	Materials	Oxygen Position	Oxygen concentration
650°C750°C	1	550°C	EY	0 cm	23%
Materials	2	550°C	SI	45cm	27%
• EY	3	550°C	PA	55cm	30%
• SI • PA	4	650°C	EY	45cm	30%
O ₂ position	5	650°C	SI	55cm	23%
0 cm45 cm	6	650°C	ΡΑ	0cm	27%
• 55 cm	7	750°C	EY	55cm	27%
O ₂ Concentration • 23% • 27%	8	750°C	SI	0cm	30%
	9	750°C	PA	45cm	23%
• 30%		Taguchi	's Orthogonal A	$rray = L_2(24)$	

Taguchi's Orthogonal Arrays – $L_9(3^4)$

➤ Total fluidized bed efficiency
Poison Index (PI%) = $\frac{CO}{CO_2} \times 100\%$ PI% < 0.4%</p>
○.4% < PI% < 0.8%</p>
→ boiler clean
→ boiler need of cleaning
→ boiler need of repair

Volatile combustion ratio

$$V - CR(\%) = \frac{(CO + CH_4)}{(CO + CH_4 + CO_2)} \times 100\%$$

28

Total fluidized bed efficiency

Volatile combustion ratio

Conclusions

• Biomass optimization

- ✓ Torrefaction temperature was the dominant factor
- The resident time showed the same trend that longer torrefaction time is better
- ✓ Flow rate of N_2 carry gas shows no significant influence on the conversion of biochar.

	Temperature	Residence time	N ₂ flow rate	
EY	220°C	60 min	50 ml/min	
S _{mix}	240°C	60 min	70 ml/min	
PA	300°C	60 min	70 ml/min	

Conclusions

• Biochar combustion

- ✓ For total combustion efficiency, materials accounted for the most influence. Oxygen inlet position had the least influence
- ✓ For volatile combustion ratio, bed temperature and oxygen concentration were important, while materials and oxygen inlet position were both less important.

	Bed Temperature	Torrefied Materials	Oxygen Position	Oxygen Concentration
Fluidized Bed Efficiency	550°C	PA	Downstream	27%
Volatile Combustion Ratio				30%

32

Thank you for your attention!