

Thermal effect of N₂O being oxidizer on combustion characteristics of laminar premixed methane flames 以一氧化二氮作為氧化劑的熱效應對於層流甲烷預混火 焰燃燒特性之影響

Speaker : Sareddy Kullai Reddy Advisor: Prof. Yueh-Heng Li

Oral Defense

Date: 26/07/2019

 \checkmark

40 mins

Spacecraft **Benefits** : Earth transportation \checkmark Long distance trips

- ✓ Large thrust
- \checkmark travelling in space
- Easy payload to low earth \checkmark orbit
- Interplanetary transport \checkmark

Source of Nitrous oxide

- It is about 6 % emission in GHS.
- ➢ It also have higher global warming potential than the CO₂.
- ➢ Most of the N₂O come from human activities is 5.6%.

Introduction

Nitrous oxide (N_2O) is often used as the oxidizer propellant for propulsion systems, it is so-called "green propellant"

■ Nitrous oxide (N_2O , also called as laughing gas)

✓ Total reaction step :
$$N_2O \rightarrow N_2 + \frac{1}{2}O_2 + 82\left(\frac{MJ}{kmol}\right)$$

- ✓ Temperature of self-decomposition : \cong 800 K
- ✓ Temperature of maintained self-decomposition : ≅1273 K
- ✓ Adiabatic flame temperature ÷ 2900 K

N₂O Combustion

Advantages :

- ✓ Strong oxidizer
- Thermal exothermicity
- ✓ Reduce the volume of oxidizer
- ✓ Improve flame stability
- ✓ Increase flame temperature
- Positive enthalpy of formation
- \checkmark Pathway to NO_x formation
- ✓ Large heat release

Applications:

- ✓ Space propulsion system
- ✓ Heating process
- Industrial applications
- ✓ Lab-scale burners
- ✓ Glass industry manufacturing
- ✓ Gas-turbine combustion chamber
- ✓ In diesel engines

T. Newman Lehman et al. 2013 - Studied the combustion behavior of $CH_4/N_2O/Air$ and $C_2H_6/N_2O/Air$ premixed flames, and found that the burning velocity decreases with increasing mass fraction of N₂O premixed mixture. Therefore, replacing O₂ by N₂O inhibits the flame.

Domina Razus et al. 2018 - Investigated the flame speeds of nitrogen diluted CH_4/N_2O mixture under equivalence ratios of 0.8 and 1.0, results shows that the decrease in the laminar burning velocity and flame temperature along with increase of flame width.

□ Vanderhoff et al. 1986 – They studied the H_2/N_2O premixed flame, the equivalence ratio changed from lean to stoichiometric, temperature distribution and NO, O_2 , N_2 , and OH concentration distributions were obtained for preliminary results.

□ **C.H.Chen et al. 2018** – Investigated dissociated from N_2O combustion under the dilute gases on the combustion characteristics of CH_4/N_2O IDF and reports that the thermal effect is dominated the chemical effect which affects the increase in flame temperature through reaction pathways of diluted N_2O combustion.

Introduction

Oxy-enrich combustion :

If the oxygen concentration exceed 21%, it called as oxy-enriched combustion.

Advantages

- ✓ Reduce the total amount of oxidizer
- ✓ Increase the flame temperature
- ✓ Save energy
- ✓ Reduce pollutant emission

Disadvantages

- ✓ Higher cost
- ✓ Low reliability of system

S.Sharma et al. 2012 - Investigated the temperature profile in axi-symmetric premixed butane/air flames using the fourier transform digital holographic interferometry, concluded that the flame width increases slightly but the measured temperature decreases as the supply of air induced.

□ Z.N.Ashrafi et al. 2015 - Investigated the 2D temperature field, flame structure and its isotherm pattern in a slot burner of CH_4 /air flames using MZI, and found that the thermal flame height is varied by Reynolds number. MZI measurement data is validated using the K-type thermocouple.

N₂O and Oxy-enrich Combustion

Investigation

- Flame configuration
- Pollutant emission
- > Thermal effect
- Chemical effect

Combustion characteristics

- Flame height
- ✓ Flame appearance
- \checkmark Emission behavior
- ✓ Heat release rate
- ✓ Heat production rate
- ✓ Flame speed
- ✓ Flame temperature

A Schematic diagram of experimental setup.

Experimental conditions

Fuel	Oxidizer	Velocity (cm/s)	Equivalence ratio (Φ)	
CH ₄	N ₂ O	100	0.8 - 1.2	
CH ₄	33%O ₂ /67%N ₂	100	0.8 - 1.2	

Numerical Simulation

Inlet temperature	300 K			
Inlet pressure	1 atm			
Inlet Velocity	1 m/s			
Reactant mixture	CH ₄ /N ₂ O and CH ₄ /oxy-enrich			
Equivalence ratio	1.0			
Model	Equil, Oppdif, Freely propagating model			

y

Optical Measurement

Flame fringe

Image 1392 x 1040

Defining the image symmetrical dimensions for data abstraction.

FFT for fringe pattern analysis

 $g(x, y) = a(x, y) + b(x, y) \cos[2\pi f_0 x + \phi(x, y)]$ = $a(x, y) + \frac{1}{2}b(x, y)e^{i\phi(x,y)}e^{2\pi i f_0 x}$ + $\frac{1}{2}b(x, y)e^{-i\phi(x,y)}e^{-2\pi i f_0 x}$ = $a(x, y) + c(x, y)\exp(2\pi i f_0 x) + c^*(x, y)\exp(-2\pi i f_0 x))$ G(f, y) = $A(f, y) + C(f - f_0, y) + C^*(f + f_0, y)$

$$\Rightarrow \quad \Delta \phi = \frac{2\pi}{\lambda} \int_{0}^{\infty} \left(\frac{n}{n_0} - 1\right) n_0 ds$$

Derived equations:

$$\implies \qquad n-1 = K\rho$$

Cropping Padd

Unwrapped Phase Map

Unwrapped Phase Map

Unfiltered Temperature field

50 100 150 200 250 300 350 400 450 500 550 600

Filtered Temperature field

Temperature field with Gaussian filter

Data Abstraction

Flame Configuration of CH_4/N_2O combustion.

Results & Discussion (1/3)

Flame Configuration of CH_4/oxy -enrich combustion.

□ Phenomena along the flame.

Results & Discussion (1/3)

□ Pollution characteristics of N_2O combustion.

□ Pollution characteristics of oxy-enrich combustion.

Results & Discussion (2/3)

Flame structure of N_2O combustion.

Flame structure of oxy-enrich combustion.

□ Net Heat release rate

□ Adiabatic flame temperature

Results & Discussion (2/3)

□ Laminar flame speed

□ Methane oxidation in N_2O combustion.

□ Methane oxidation in oxy-enrich combustion.

□ Flame temperature at centerline distribution – B-type thermocouple.

□ Flame temperature at centerline distribution - MZI measurement.

MZI measurement data of CH_4/N_2O flames

Column A x F ↑		MZI T(K)							
		F	Ε	D	С	B	Α		
High temperature region	6	517	761	1071	1506	1794	1555		
: A, B and C	5	548	826	1222	1634	1762	1656		
Low temperature region :	4	547	927	1313	1600	1737	1596		
D, E and F.	3	488	928	1401	1662	1718	1582		
	2	384	803	1453	1740	1754	1219		
	1	336	443	1202	1622	1265	389		

MZI measurement data of CH_4 /oxy-enrich flames.

	Oxy-enrich T(K)						
	F	Ε	D	С	B	Α	
6	332	621	1260	1648	1770	1288	
5	338	625	1348	1705	1711	1451	
4	340	615	1246	1649	1748	1453	
3	328	492	1194	1667	1743	1474	
2	321	381	894	1720	1785	723	
1	320	334	489	1462	1689	362	

Temperature measurement using the thermocouples

		К Туре		В Туре		
	F	E	D	С	В	А
6	337	783	1133	1350	1520	1583
5	405	925	1149	1427	1546	1582
4	378	924	1245	1450	1529	1551
3	362	919	1282	1455	1486	1428
2	346	820	1245	1391	1361	1266
1	327	594	1073	1307	1193	1040

Temperature measurement using the thermocouples

	Oxy-enrich T(K)							
	К Туре			В Туре				
	F	Е	D	С	В	А		
6	438	730	1064	1295	1461	1533		
5	438	743	1103	1337	1462	1532		
4	412	733	1112	1349	1467	1508		
3	380	656	1070	1318	1431	1471		
2	343	540	949	1212	1390	1124		
1	324	384	703	986	1117	906		

Results & Discussion (3/3)

Comparison of the two measurements.

	$N_2O-(\%)$ T(K)						
	\mathbf{F}	Ε	D	С	В	Α	
6	-53	2.7	5.5	-11.5	-18	1.8	
5	-35	10	-6.3	-14	-13.9	-4.7	
4	-45	-0.3	-5.4	-10	-13	-2.9	
3	-34	-1	-9	-14	-15	-11	
2	-11	2	-16.7	-25	-28.8	3.7	
1	-2.8	25	-12	-24	-6	62.5	

	Oxy-enrich-(%) T(K)						
	F	Ε	D	С	В	Α	
6	24	14.9	-18	-27	-21	16	
5	23	15.9	-22	-27	-17	5.3	
4	17.5	16.2	-12	-22	-19	3.6	
3	13.8	25	-11.5	-26.4	-21.8	-0.24	
2	6.6	29.3	6	-41.8	-28	35.6	
1	1.06	13	30	-48	-51	60	

Conclusions

□ The flame appearance, flame shape, flame height, flame temperature, flame speed, heat release rate and heat production rate were varied between the N_2O and oxy-enrich flames.

- □ The thermal effect dominating in N_2O combustion is due to large heat release from the decomposition of N_2O and cause rise in temperature profiles, CO and NO_x concentrations.
- In this study, CH_4/N_2O flames was compared to oxy-enrich flames and found that the higher maximum temperatures, broadening reaction zones, significant thermal behavior and exhibit severe flame location shifts.

Conclusions

- The average and maximum temperature of N₂O combustion along the centerline occurs at inner region of flame.
- The results of MZI measurement across the flame at selected points are found to be higher temperature region (>1000 K) is observed at *columns A, B and C*, the low-temperature region (<1000 K) at *columns D, E and F* in various oxidizer environments.
- □ The comparison of the two measurements approaches show a good agreement at the selected positions.
- □ The influence of thermal effect on CH_4/N_2O flames is more prominent than the CH_4/Oxy -enrich flames.
- □ Therefore, replacing the O_2/N_2 and choosing the N_2O being oxidizer in methane flames is worthy.

李約亨教授實驗室 | ZAP LAB Zic and Partners Lab

As our circle of knowledge expands, so does the circumference of darkness surrounding it. — Albert Einstein

Thank you for attention

Yueh-Heng Li (Zic) 李約亨 Assistant Professor, Dept. Aero. & Astros., NCKU, Taiwan. <u>yuehheng.li@gmail.com</u>

yueheng@mail.ncku.edu.tw ZAPLab Website: http://59.125.238.48/zaplab/ Visit Now !

