Contents lists available at ScienceDirect

Combustion and Flame

journal homepage: www.elsevier.com/locate/combustflame

Role of N_2O and equivalence ratio on NO_x formation of methane/nitrous oxide premixed flames

Chun-Han Chen, Yueh-Heng Li*

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan, ROC

ARTICLE INFO

Article history: Received 6 May 2020 Revised 30 September 2020 Accepted 1 October 2020

Keywords: Nitrous oxide NO formation NO reaction pathway N₂O decomposition OPPDIF

ABSTRACT

Nitrous oxide (N_2O) is often used as an oxidizer in rocket technology with plenty of potential advantages. However, the N₂O/hydrocarbon combustion results in the staggering increase of NO_x emission. To scrutinize the role of N₂O and equivalence ratio on NO formation characteristics of N₂O/CH₄ premixed flame, mixtures of N₂O/CH₄ and N₂/O₂/CH₄ were investigated by employing one-dimensional opposed-jet model with detailed reaction mechanism. The flame structures, NO reaction pathways, and NO formation routes were discussed. In the heat release rate analysis, the heat release is dominated by N_2O route, resulting in high flame temperature in N₂O/CH₄ premixed flame. Regarding the mechanism of NO formation, NO is mainly produced from N₂ through the thermal routes and from HNO through the HNO-intermediate routes for the $N_2/O_2/CH_4$ flame but mainly comes from N_2O through the N_2O and HNO-intermediate routes in the N₂O/CH₄ flame. The thermal routes alter to the primary chemical mechanism of NO consumption. The NO production in fuel-lean N₂O/CH₄ flames is enhanced through the N₂O route due to the increase of the mole fraction of O atom. The thermal route becomes forward reactions to produce NO for the extreme fuel-rich N₂O/CH₄ flame. Regarding the reaction pathways of the prompt route, it can be approximately divided into three categories: (1) $N_2 \rightarrow CN \rightarrow NCN$, NO (in terminal) $\rightarrow N_2$; (2) $CN \rightarrow NCN$, NO (in terminal) \rightarrow NO, CN; (3) N₂ \rightarrow CN \rightarrow NCN, NO (in terminal) \rightarrow N \rightarrow N₂. In NO production rate analysis, the main NO formation comes from the N2O and HNO-intermediate routes, while NO consumption associates with the thermal and NNH-intermediate routes. In addition, the prompt-NO formation is dominated by species of N₂O instead of CH radical in the extreme fuel-rich N₂O/CH₄ flames.

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

With the proliferation of space industry privatization, rocket propulsion technology is anticipated to have applications to aviation for curtailing long-haul flight time and reducing fossil fuel consumption. Nitrous oxide (N₂O) is often used as an oxidizer in rocket technology because of its advantages of relatively high density-specific impulse, low toxicity, and relative high liquefaction temperature, leading to benefits in mobility and inventory [1–3]. N₂O decomposes either thermally or catalytically to 33% oxygen and 67% nitrogen ($2N_2O \rightarrow 2N_2 + O_2$, $\Delta H = -163$ kJ/mol). Obviously, N₂O decomposition is an exothermic reaction, and the oxygen content is higher than the normal air condition (oxygen-rich condition) [4]. Oxygen-rich conditions and high thermal exothermicity can effectively improve combustion efficiency and energy conversion [5,6]. However, N₂O is regarded as a greenhouse gas

* Corresponding author. E-mail address: yueheng@mail.ncku.edu.tw (Y.-H. Li). and doubles as the main source of NO formation in the stratosphere; the presence of NO gases leads to ozone layer depletion [7]. To diminish the environmental impact, the correlation between combustion characteristics and gas emission in hydrocarbon/N₂O flames must be elucidated.

Studies on hydrocarbon combustion in the presence of nitrogen-containing oxidizers are of interest in discussing laminar burning velocity [8,9], ignition delay [10,11], and flame extinction [12,13]. There is a fair amount of literature focused on the combustion characteristics of nitrous oxides/hydrocarbon mixtures in the past. Powell et al. [14–16] examined experimentally and numerically the laminar burning velocities of N₂O flames with various hydrocarbon fuels (H₂, CH₄, C₂H₂, and C₃H₈) at near atmospheric pressure (0.8 atm). PPD mechanism, which was composed of the optimized C₁–C₃ hydrocarbon mechanism [17] and the N_xO_y/CO/H₂/O₂ chemical mechanism [18], was adopted in the numerical simulation, but the calculated laminar burning velocities from the PPD mechanism was not in agreement with the experimental data. The modified PPD mechanism, which was

https://doi.org/10.1016/j.combustflame.2020.10.002

0010-2180/© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

based on considering the most sensitive reactions with the highest rate constant uncertainty, was proposed. Pfahl et al. [19] studied the flammability limits in H₂-CH₄-NH₃-N₂O-O₂-N₂ mixtures. The lower and upper flammability limits for methane/nitrous oxides mixtures are 2.5 ~3.0% and 43 ~50%. In addition, the effect of small amounts of oxygen on the flammability of methane/nitrous oxides mixtures has been studied and showed that it is weak dependence on small amounts of oxygen (<5%). Wang and Zhang [20] experimentally and numerically investigated the laminar burning velocities of C₂H₄/N₂O flames, and the USM mechanism was proposed. This mechanism consists of two submechanisms, which were hydrocarbon chemistry from USC Mech II-2 [21] and nitrogen chemistry from San Diego Mech [22], respectively. They modified the reaction rate constants of some critical elementary reactions, associating with N2O and CO reaction. Nevertheless, the USM mechanism showed that it agreed well with the experimental laminar burning velocity of CH₄/N₂O/N₂ flame. Mével and Shepherd [23] reported the auto-ignition delaytime of hydrocarbon / N₂O mixtures by using the shock-tube technique. The ignition was driven by two reaction steps, which were N_2O (+M) = N_2 + O (+M) and N_2O + H = N_2 + OH, for hydrocarbon/N₂O mixtures. Newman-Lehman et al. [24] performed experimental and numerical works to elucidate the combustion behavior of $CH_4/N_2O/air$ and $C_2H_6/N_2O/air$ flames; in particular, they verified the influence of N₂O in premixed flames. The results revealed that the flame suppression effect is contingent on an increase in N₂O mass fraction in the premixed flames. Linteris et al. [25] experimentally and numerically investigated the burning velocity of CO/ N2O premixed flames with H2 addition. The results indicated that a direct reaction between CO and N2O is the primary method for the consumption of these two species when the mole fraction of H_2 is less than 0.14%.

Fundamental works on the characteristics of NO_x emission for hydrocarbon fuel combustion have been investigated for several years. Sze et al. [26] studied NO_x emissions for different burner designs; Choy et al. [27] studied the pollutant emissions of opened and impinging inverse diffusion flames (IDFs) in coaxial burners. The results showed that NO_x emissions of impinging IDFs were larger than the opened IDFs one. In general, the resulting NO would be re-burnt in the post flame zone. Nonetheless, the combustion products in the post-flame zone were quenched, and the flame temperature was decreased due to the presence of the impinging wall. Therefore, the re-burned NO in the post flame zone was inhibited in impinging IDFs. Kotb and Saad [28] discussed the influence of the swirl direction on pollutant emissions and pointed out that co-swirl had higher CO₂ emissions than counterswirl. On the other hand, counter-swirl can achieve lower NO_x emissions. In addition, Yamamoto et al. [29] explored the influence of liftoff flames on pollutant emissions. The experimental results indicated that the NO_x content decreased when the external flame was lifted. There are a certain amount of studies on the effects of dilution gas addition on pollutant emissions. Rørtveit et al. [30] investigated the influence of diluent addition on NO formation in hydrogen opposed flame. The addition of He and CO₂ can effectively reduce the NO content. On the other hand, the addition of N₂ resulted in higher NO content. Regarding the characteristics of NO_x emission for fuel/N₂O combustion, the literature is scarce. Konnov and Dyakov [31] reported the NO emission characteristics in CH₄/O₂/ Ar flames doped with small amounts of N₂O. Calculated concentrations of NO significantly depends on the rate constant of reaction $N_2O + O = NO + NO$ in the fuel-lean condition.

As mentioned, few researches had examined the NO_x formation mechanism of hydrocarbon/N₂O flames. In this study, five chemical routes associated with the NO formation mechanism [32,33] were used for numerical simulation, the thermal route, the N₂O route, the NNH-intermediate route, the HNO-intermediate route, and the prompt route, respectively. Glarborg et al. [32] reviewed the detailed kinetic and chemical mechanism of NO formation, incorporating thermodynamic properties, reaction mechanism, and in-situ reduction of NO. Shih and Hsu [33] investigated NO_x characteristics of H₂/CO syngas counterflow diffusion flames and demonstrated the detailed reaction pathway of NO formation. As the high concentration of H₂ in syngas, most of NO was produced through the thermal route instead of the NNH-intermediate route and the N₂O route. N₂O decomposition is characterized by large exothermicity. The NO formation mechanism can thus be intuitively associated with the thermal route. However, results showed that NO converted back to N2 through the thermal route. Nevertheless, the presence of N₂O facilitates NO formation through the HNO-intermediate route. Although the primary chemical mechanisms involved in hydrocarbon/N2O combustion are established, the chemical pathway of NO formation in hydrocarbon/N2O flames is still incomplete. Accordingly, this study conducted a detailed numerical analysis to elucidate the NO formation mechanism under the variation of CH₄/N₂O equivalence ratios. Additionally, the effect of N₂O decomposition on NO formation in a stoichiometric CH₄/N₂O flame was examined through comparison with that in a $CH_4/N_2/O_2$ flame (with the same N–O ratio as N₂O).

2. Numerical model and chemical mechanism

This study used CHEMKIN PRO for numerical calculation, and the OPPDIF-code [34] was employed to calculate several essential properties, including the distributions of temperature, velocity, pressure, and concentration along with the axial distribution; the rates of reaction, production, and net heat release were also calculated. Furthermore, the flame configuration was analyzed using data obtained from the CHEMKIN database. such as chemical kinetics, thermodynamics, and transport properties. The physical model used in this study was a one-dimensional, counterflow premixed flame (see in [33]). The N₂/O₂/CH₄ and N₂O/CH₄ mixtures were respectively applied in upper and lower nozzles. The separation distance and flow rate of two nozzles were set to 2 cm and 50 cm/s, respectively. The comparisons for both mixtures were conducted at an identical strain rate of 100 s⁻¹ and under ambient conditions of 300 K and 1 atm. Regarding the chemical mechanism, the chemical mechanism proposed by Glarborg et al. [32] was selected in this study. This mechanism consists of 153 spices and 1397 elementary reactions, which were based on the chemistry of C_1-C_2 hydrocarbons, amines, cyanides, and interactions of hydrocarbon/nitrogen. Comprehensive mechanisms of NO formation, including the thermal NO, the prompt NO, mechanism of N₂O and NNH, oxidation of HCN, oxidation of HNCO, and oxidation of NH₃, were also involved in this mechanism. The reaction rate constant was determined by the modified Arrhenius expression,

$$\mathbf{k} = \mathbf{A} \mathbf{T}^{\beta} \boldsymbol{e} \boldsymbol{x} \boldsymbol{p} \left(\frac{-E_a}{RT} \right) \tag{1}$$

where *A* is the pre-exponential factor, β is the temperature exponent, and *E*_a is the activation energy. In the simulation, to obtain converged solutions, adaptive mesh parameters were set as follows: adaptive grid control based on solution gradient (GRAD) = 0.1 and adaptive grid control based on solution curvature (CURV) = 0.1. Allowed maximum number of grid points was set as 1000, and the number of adaptive grid points was set as 20. All the simulations were considered using thermal diffusion and multicomponent transport. The discrepancy of the calculated temperature distributions in the two conditions of NTOT (allowed maximum number of grid points), that is, 1000 and 15,000, is certainly low. Therefore, the numerical results were verified to be grid-independent.

Fig. 1. Distributions of temperature and species mole fraction of (a) N₂O/CH₄ and (b) N₂/O₂/CH₄ flames under stoichiometric conditions.

3. Results and discussion

3.1. Effects of N_2O decomposition

 N_2O decomposes to 33% O_2 and 67% N_2 at high temperatures. Therefore, to assess the role of N_2O on NO formation, two different oxidizers were prepared and compared. One of the oxidizers was pure N_2O , whilst the other comprised 33% O_2 and 67% N_2 .

Figure 1 shows the flame structures, including the distributions of temperature, and major and minor species for both N₂O/CH₄ and $N_2/O_2/CH_4$ flames under stoichiometric conditions. Because a premixed flame was applied in the opposed-jet model, the distribution was symmetrical; hence, only the left domain was displayed in Fig. 1. The dashed line represents the flame sheet denoted at locations with a maximum flame temperature gradient. The region ahead of the flame sheet defined as a preheat zone, while the region behind the flame sheet defined as a reaction zone. The results revealed that the flame temperature and mole fractions of OH were higher for the N_2O/CH_4 flame. The maximum flame temperature of the N_2O/CH_4 flame reached 2798 K, which was much higher than 2430 K for the $N_2/O_2/CH_4$ flame. For fuel consumption, CH₄ was primarily consumed through the reaction of $CH_4 + H = H_2 + CH_3$. Meanwhile, the dominant reaction of N_2O consumption was $N_2O + H = N_2 + OH$ [24]. Both N_2O and CH_4 reacted with H atom. Therefore, the mole fraction of H was low in the N_2O/CH_4 flame. In the $N_2/O_2/CH_4$ flame, the mole fraction of H was dominant in the preheat zone and the beginning portion of the reaction zone, ensuing OH mole fraction overriding after CH₄ fully completed. On the contrary, the mole fraction of OH for the N₂O/CH₄ flame was dominant in both preheat and reaction zones. It is noted that the ratio of H/OH for the N_2O/CH_4 flame was 0.40, which is certainly larger than that for the $N_2/O_2/CH_4$ flame (0.25). Moreover, the mole fractions of NO and CO were higher for the N_2O/CH_4 flame, whereas the mole fraction of CO_2 was lower. In the preheat zone, the process of N2O consumption for its decomposition was initiated; O₂ resulting from N₂O decomposition started to react with CH₄. After the mole fraction of CH₄ decreased to zero, the mole fraction of CO began to decline, and the mole fraction of O_2 started to increase. It implied that fuels reacted with oxygen derived from N_2O decomposition instead of N_2O . Moreover, the mole fraction of NO increased until N_2O was consumed completely. NO formation was dominated by N_2O in the N_2O/CH_4 flame.

In order to illustrate the influence of N₂O decomposition on flame temperature, the dominant reactions of the heat release rate in both flames were shown in Fig. 2. Unlike the flame structure, as shown in Fig. 1, the distance in Fig. 2 is an absolute location, and the origin represents the nozzle exit, and the vertical dashed line represents the flame front. In the $N_2/O_2/CH_4$ premixed flame, heat release mostly comes from hydrocarbon combustion. The exothermic reaction is dominated by R78 ($O + CH_3 = H + CH_2O$), and co-dominated by R65 $(H + CH_3 (+M) = CH_4 (+M))$ and R4 (OH + $H_2 = H + H_2O$); the endothermic reaction is dominated by R1 (H + $O_2 = O + OH$). On the other hand, in the N_2O/CH_4 premixed flame, the heat release is dominated by R761 $(N_2O + H = N_2 + OH)$, followed by R760 $(N_2O (+ M) = N_2 + O (+ M))$ M)). Both two reactions are associated with N₂O species, and, in the meantime, these two reactions are important for NO formation in the N₂O route. The endothermic reaction was dominated by R760, whereas the exothermic reaction was dominated by the chain-propagating reaction R761. The exothermic reaction caused by R761 is much more intense than the endothermic reaction caused by R760. In order to interpret the exothermic contribution of N₂O decomposition on the resulting flame temperature, it is informative to integrate the heat release rate of specific chemical reactions along with the distance and compare the magnitudes of heat release rate for two cases. Targeted on the hydrocarboncombustion-relevant chemical reaction, R78 is an essential reaction to contribute primary exothermicity during the combustion for two cases. Accordingly, the magnitudes of the heat release rate based on R78 are 4.03×10^{-2} kJ/cm²-s for the N₂O/CH₄ premixed flame and 6.15×10^{-2} kJ/cm²-s for the N₂/O₂/CH₄ premixed flame. The corresponding values are comparable. Nevertheless, in the N₂O/CH₄ premixed flame, the magnitude of the primary heat release rate based on R761 is 4.65×10^{-1} kJ/cm²-s, which is an order

Fig. 2. The dominant reactions of heat release rate in (a) $N_2/O_2/CH_4$ and (b) N_2O/CH_4 flames under stoichiometric conditions: (R1) H + $O_2=O+OH$; (R4) $OH+H_2=H+H_2O$; (R29) $CO+OH=CO_2+H$; (R61) $HCO+OH=CO+H_2O$; (R65) $CH_3+H(+M)=CH_4(+M)$; (R68) $CH_4+OH=CH_3+H_2O$; (R78) $CH_3+O=CH_2O+H$; (R105) $CH_2+OH=CH_2O+H$; (R760) $N_2O(+M)=N_2+O(+M)$; (R761) $N_2O+H=N_2+OH$; (R943) $CH_2(S)+N_2O=CH_2O+N_2$; (R946) $CH+NH_3=H_2CN+H + H$.

of magnitude greater than that of R78. Consequently, the fact of the flame temperature of the N₂O/CH₄ premixed flame much higher than that in the N₂/O₂/CH₄ premixed flame is attributed to the exothermicity of N₂O decomposition. It is noted that the unit of magnitudes are kJ/cm²-s instead of kJ/cm³-s, because these were obtained by integrating the heat release rate along with the distance.

To study the NO formation mechanism, the net reaction rates of some major NO formation reactions for N₂O/CH₄ and N₂/O₂/CH₄ flames were compared under stoichiometric conditions; the results are presented in Figs. 3-6. The selected elementary reactions for NO formation are listed in Table 1. Several elementary reactions were selected from Glarborg et al. [32], namely the thermal route, the N₂O route, the NNH-intermediate route, and the prompt route, respectively. The reburning chemistry, namely the HNOintermediate route, was also taken into consideration in the present study. The elementary reactions of the HNO-intermediate route were selected from Park and Kim [35], but those reactions can also be found from the Glarborg's mechanism. Consequently, all the reaction constants, thermodynamic, and transport data of the selected elementary reactions, including the HNO-intermediate route, were based on the mechanism proposed by Glarborg et al. [32]. The complete set of elementary reactions, including rate constants, transport data, and thermodynamic data, can be found in the Supplementary Materials. Each part of Figs. 3–6 is divided into upper and lower portions; the net reaction rates for the $N_2/O_2/CH_4$ flame are presented in the upper portions, as shown in Figs. 3(a), 4(a), 5(a) and 6(a). Those for the N_2O/CH_4 flame are presented in the lower portions, as shown in Figs. 3(b), 4(b), 5(b) and 6(b). The coordinate distances in Figs. 3-6 are absolute location. The parentheses in all of the figures represent the overall tendency of

Fig. 3. Net reaction rates comparisons of NO formation reaction in the thermal route for (a) the stoichiometric $N_2/O_2/CH_4$ and (b) the stoichiometric N_2O/CH_4 flame : (R672) N+OH=NO+H; (R673) N+O_2=NO+O; (R674) N+NO= O + N_2.

Fig. 4. Net reaction rates comparisons of NO formation reaction in the N₂O route for (a) the stoichiometric N₂/O₂/CH₄ and (b) the stoichiometric N₂O/CH₄ flame: (R760) N₂O(+M)=N₂+O(+M); (R761) N₂O+H = N₂+OH; (R667) NH+NO=N₂O+H; (R762) N₂O+O = 2NO; (R763) N₂O+O = N₂+O₂.

ladie I					
Selected	elementary	reactions	for	NO	formation.

$\begin{tabular}{ c c c c c } \hline Thermal route \\ \hline R672 & N + OH = NO + H & 3.8E13 & 0.000 & 0 \\ \hline R673 & N + O_2 = NO + O & 5.9E09 & 1.000 & 6280 \\ \hline R674 & N + NO = O + N_2 & 9.4E12 & 0.140 & 0 \\ \hline N_2O route \\ \hline R760 & N_2O (+M) = N_2 + O (+M) & 9.9E10 & 0.000 & 57,901 \\ \hline Low pewssure limit: & 6.0E14 & 0.000 & 57,444 \\ \hline R761 & N_2O + H = N_2 + OH & 6.4E07 & 1.835 & 13,492 \\ \hline R667 & NH + NO = N_2O + H & 2.7E15 & -0.780 & 20 \\ \hline R762 & N_2O + O = 2NO & 9.2E13 & 0.000 & 27,679 \\ \hline R763 & N_2O + O = N_2 + O_2 & 9.2E13 & 0.000 & 27,679 \\ \hline \end{tabular}$	Reaction number	Reaction step	Α	β	Ea		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Thermal route						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R672	N + OH = NO + H	3.8E13	0.000	0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R673	$N + O_2 = NO + O$	5.9E09	1.000	6280		
$ \begin{array}{cccc} N_2 0 \mbox{ route} \\ R760 & N_2 0 \ (+M) = N_2 + 0 \ (+M) & 9.9E10 & 0.000 & 57,901 \\ \mbox{ Low pewsure limit:} & 6.0E14 & 0.000 & 57,444 \\ R761 & N_2 0 + H = N_2 + 0H & 6.4E07 & 1.835 & 13,492 \\ R667 & NH + N0 = N_2 0 + H & 2.7E15 & -0.780 & 20 \\ R762 & N_2 0 + 0 = 2NO & 9.2E13 & 0.000 & 27,679 \\ R763 & N_2 0 + 0 = N_2 + 0_2 & 9.2E13 & 0.000 & 27,679 \\ \end{array} $	R674	$N + NO = O + N_2$	9.4E12	0.140	0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N ₂ O route						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R760	$N_2O(+M) = N_2 + O(+M)$	9.9E10	0.000	57,901		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Low pewssure limit:	6.0E14	0.000	57,444		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R761	$N_2O + H = N_2 + OH$	6.4E07	1.835	13,492		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R667	$NH + NO = N_2O + H$	2.7E15	-0.780	20		
$R763 N_2O + O = N_2 + O_2 9.2E13 0.000 27,679$	R762	$N_2O + O = 2NO$	9.2E13	0.000	27,679		
	R763	$N_2O + O = N_2 + O_2$	9.2E13	0.000	27,679		
NNH-intermediate route							
R675 $NNH = N_2 + H$ 1.0E09 0.000 0	R675	$NNH = N_2 + H$	1.0E09	0.000	0		
R677 $NNH + O = N_2O + H$ 1.9E14 -0.274 -22	R677	$NNH + O = N_2O + H$	1.9E14	-0.274	-22		
R678 $NNH + O = N_2 + OH$ 1.2E13 0.145 -217	R678	$NNH + O = N_2 + OH$	1.2E13	0.145	-217		
R679 $NNH + O = NH + NO$ 5.2E11 0.381 -409	R679	NNH + O = NH + NO	5.2E11	0.381	-409		
R681 $NNH + O_2 = N_2 + HO_2$ 5.6E14 -0.385 -13	R681	$NNH + O_2 = N_2 + HO_2$	5.6E14	-0.385	-13		
HNO-intermediate route	HNO-intermediate route						
R720 NO + H (+M) = HNO (+M) $1.5E15 -0.400 0$	R720	NO + H (+M) = HNO (+M)	1.5E15	-0.400	0		
Low pressure limit: 2.4E14 0.206 –1550		Low pressure limit:	2.4E14	0.206	-1550		
R721 $HNO + H = NO + H_2$ 6.6E10 0.9 495	R721	$HNO + H = NO + H_2$	6.6E10	0.9	495		
R723 $HNO + OH = NO + H_2O$ 1.2E09 1.200 334	R723	$HNO + OH = NO + H_2O$	1.2E09	1.200	334		
Prompt route	Prompt route						
R944 $CH + N_2 = H + NCN$ 5.3E09 0.790 16,770	R944	$CH + N_2 = H + NCN$	5.3E09	0.790	16,770		
R954 $CN + N = C + N_2$ 5.9E14 -0.400 0	R954	$CN + N = C + N_2$	5.9E14	-0.400	0		
R988 $C_2 + N_2 = 2CN$ 1.5E13 0.000 41,730	R988	$C_2 + N_2 = 2CN$	1.5E13	0.000	41,730		
R1002 $NCN + M = C + N_2 + M$ 8.9E14 0.000 62,100	R1002	$NCN + M = C + N_2 + M$	8.9E14	0.000	62,100		
R1004 $NCN + H = HCN + N$ 2.2E11 0.710 5321	R1004	NCN + H = HCN + N	2.2E11	0.710	5321		
R1005 $NCN + H = HNC + N$ 4.3E-4 4.690 2434	R1005	NCN + H = HNC + N	4.3E-4	4.690	2434		
R1006 $NCN + O = CN + NO$ 2.5E13 0.170 -34	R1006	NCN + O = CN + NO	2.5E13	0.170	-34		
R1008 $NCN + OH = NCO + NH$ 1.7E18 -1.830 4143	R1008	NCN + OH = NCO + NH	1.7E18	-1.830	4143		
R1009 NCN + OH = HCN + NO 2.6E08 1.220 3593	R1009	NCN + OH = HCN + NO	2.6E08	1.220	3593		
R1010 $NCN + O_2 = NCO + NO$ 1.3E12 0.000 23,167	R1010	$NCN + O_2 = NCO + NO$	1.3E12	0.000	23,167		
R1011 $NCN + NO = CN + N_2O$ 1.9E12 0.000 6280	R1011	$NCN + NO = CN + N_2O$	1.9E12	0.000	6280		

Fig. 5. Net reaction rates comparisons of NO formation reaction in the NNH-intermediate route for (a) the stoichiometric N₂/O₂/CH₄ and (b) the stoichiometric N₂O/CH₄ flame: (R675) NNH=N₂+H; (R677) NNH+O=N₂O+H; (R678) NNH+O=N₂+OH; (R679) NNH+O=NH+NO; (R681) NNH+O₂=N₂+HO₂.

Fig. 6. Net reaction rates comparisons of NO formation reaction in the HNOintermediate route for (a) the stoichiometric $N_2/O_2/CH_4$ and (b) the stoichiometric N_2O/CH_4 flame: (R720) NO+H(+M)=HNO(+M); (R721) HNO+H=NO+H_2; (R723) HNO+OH=NO+H_2O.

Fig. 7. The reaction pathway diagram of NO formation for the stoichiometric $N_2/O_2/CH_4$ flame. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

each elementary reaction, which was obtained by integrating the net reaction rate of elementary reactions along with the distance.

In Fig. 3(a) and (b), the reactions are associated with the thermal route, including R672 (N + OH = NO + H), R673 (N + $O_2 = NO$ +0), and R674 (N + NO = 0 + N₂). For the N₂/O₂/CH₄ premixed flame, R672 and R674 were dominated. N_2 was converted to N and NO through reaction R674, whilst N atom became NO through R672 and R673. However, NO reacted with N to convert back to N₂ through R674 for the N₂O/CH₄ flame, as shown in Fig. 3(b). Nevertheless, at the beginning of the reaction zone, the net reaction rate of R672 and R673 had positive values, but they had shifted to negative values in the post-reaction zone ultimately, as shown in Fig. 3(b). Therefore, the overall reactions of R672 and R673 were reverse reactions, and NO was converted to N atom through these two reactions. It is noted that the net reaction rate of R673 relatively became weak for the N2O/CH4 flame compared to the $N_2/O_2/CH_4$ flame. It also implies that the NO formation through the thermal route for the N₂O/CH₄ flame is insignificant.

Figure 4(a) and (b) shows NO formation associated with N₂O species for both $N_2/O_2/CH_4$ and N_2O/CH_4 flames, so-called the N_2O route. For the $N_2/O_2/CH_4$ flame, N_2 became N_2O through reverse R760 (N_2 + O (+ M) \rightarrow N_2O (+ M)), and a part of N_2O may be converted back to N_2 through R761 (N_2O + H \rightarrow N_2 + OH) and R763 (N₂O + O \rightarrow N₂ + O₂). Simultaneously, N₂O was converted to NO through R762 ($N_2O + O \rightarrow 2NO$) and reverse R667 (N_2O + H \rightarrow NH + NO), and NO formation was dominated by reverse R667. By contrast, the overall tendency of R760 was a forward reaction (N₂O (+M) \rightarrow N₂ + O (+M)) instead of a reverse reaction in the N₂O/CH₄ flame; hence N₂O was converted to N₂ through R760 and R761. Since the concentration of N₂O was high at the beginning of the N₂O/CH₄ flame, this fact led R760 altering to forward reaction. NO was also formed through R762 and reverse R667 and was dominated by reverse R667. The high concentration of NO came from N₂O due to significant R667 and R762 at the beginning of N₂O/CH₄ flame, resulting in a positive net reaction rate

of R674 in the thermal route, as shown in Fig. 3(b). Also, the significant NO concentration led R672 and R673 to yield N atom in the thermal route, even if N atom became NO through R672 and R673 in the beginning of N_2O/CH_4 flame, as shown in Fig. 3(b). It is noted that R762 and R763 for both $N_2/O_2/CH_4$ and N_2O/CH_4 flames are overlapped.

Figure 5(a) and (b) illustrated NO formation through the NNH-intermediate route for both N₂/O₂/CH₄ and N₂O/CH₄ flames. For the $N_2/O_2/CH_4$ flame, N_2 was first converted to NNH through reverse R675 (N $_2~+~H~\rightarrow~$ NNH), which subsequently reacted with O and O_2 to convert back to N_2 through R678 (NNH + O \rightarrow N₂ + OH), and R681 (NNH + O₂ \rightarrow N₂ + HO₂), as shown in Fig. 5(a). In addition, NNH was also converted back to N₂O through R677 (NNH + O \rightarrow N₂O + H). For the N₂O/CH₄ flame, R675, R677, and R679 show the opposite tendency, as shown in Fig. 5(b). Since the mole fraction of N₂ in the beginning of $N_2/O_2/CH_4$ flame is larger than that of N_2O/CH_4 flame, as shown in Fig. 1(b), it made NNH form N2 through R675. On the other hand, a high concentration of N₂O at the beginning of the N₂O/CH₄ flame, as shown in Fig. 1(a), led N₂O to produce NNH through reverse R677. As discussed previously, the significant NO concentration at the beginning of N₂O/CH₄ flame made NO converting to NNH through reverse R679.

The NO formation mechanism through the HNO-intermediate route is illustrated in Fig. 6(a) and (b) for both N₂/O₂/CH₄ and N₂O/CH₄ flames. HNO was converted to NO through R721 (HNO + H \rightarrow NO + H₂), and R723 (HNO + OH \rightarrow NO + H₂O), and NO was consumed through converting back to HNO via R720 (NO + H (+M) \rightarrow HNO (+M)). For the N₂O/CH₄ flame, R720 became a reverse reaction, indicating that NO was consumed through the HNO-intermediate route for the N₂O/CH₄ flame.

Figures 7 and 8 illustrate the overall reaction pathway diagrams of NO formation for the $N_2/O_2/CH_4$ and the N_2O/CH_4 flames with stoichiometric conditions. The reaction values on the arrows in Figs. 7 and 8 represent overall net reaction rates, which were ob-

Fig. 8. The reaction pathway diagram of NO formation for the stoichiometric N₂O/CH₄ flame. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

tained from the integration of net reaction rate distribution over the distance between two nozzles. The reaction values marked in red denote the dominant reaction in those reactions, and the thickness of the arrows means the magnitude of the overall net reaction rate for the dominant reaction in Figs. 7 and 8. These overall reaction pathway diagrams consist of the thermal route, the N₂O route, the NNH-intermediate route, the HNO-intermediate route, and the prompt route, which were listed in Table 1. Only the dominant reactions of the prompt route presented in the overall reaction pathway diagrams, detailed reaction pathway diagrams of the prompt route are discussed in the next section. For the N₂/O₂/CH₄ flame, the results demonstrated that NO was mainly produced from N₂ through the thermal route (R672, R673, and reverse R674), as shown in Fig. 7. Sequentially, NO was formed from N_2 through the N_2O routes (reverse R667 and R762). In addition, the reaction pathway revealed that NH is an important species for NO formation. The formation of NH is primarily from N₂O (reverse R667), NNH (R679), and reverse R668 (N₂ + OH \rightarrow NH + NO), and NH is regarded as an intermediate species for NO formation through the N₂O routes. In addition, N₂ was directly consumed and formed NO through reverse R668. The species of HNO was mainly produced from NH through R661 (NH + OH \rightarrow HNO + H), R663 (NH + $O_2 \rightarrow$ HNO + O), and was dominated by R661. HNO was then consumed through the HNO-intermediate route (R720 and R721), resulting in NO formation. N_2 was reacted with CH radical to form NCN, and sequentially NCN converted to NO through the prompt route (R944 and R1006).

Figure 8 presented the reaction pathway of NO formation in the N_2O/CH_4 flame with a stoichiometric condition. The magnitudes of overall net reaction rate for the N_2O/CH_4 flame are larger than those for the case of the $N_2/O_2/CH_4$ flame, and NO formation mainly derives from N_2O through the N_2O route (reverse R667 and R762) and the HNO-intermediate route (N_2O to NH through reverse R667, NH to HNO through R661 and HNO to NO through reverse R720). However, the thermal (reverse R672, reverse R673 and R674), NNH-intermediate routes (reverse R679), and R668 played the role of NO consumption in the N₂O/CH₄ flame. Moreover, N₂O was converted back to N₂ through the reaction of R761, which was the N₂O route, and the main heat release source, as shown in Fig. 2. The prompt route was presented opposite tendency in the N₂O/CH₄ flame, N₂O was consumed and formed NO and NCN through reverse R1011. Sequentially, NCN was converted to N₂ through reverse R944.

3.2. Effects of equivalence ratio

To understand the effects of equivalence ratio (ϕ) on NO formation, the N₂O/CH₄ flames were analyzed at three conditions of equivalence ratio, namely $\phi = 0.8$, 1 and 1.2, representing fuellean, stoichiometric and fuel-rich conditions with a fixed flow velocity of 50 cm/s and strain rate of 100 s⁻¹. Figure 9 illustrated the distributions of minor species (H, O, and OH) at various equivalence ratios for the N₂O/CH₄ flames. The distance in Fig. 9 is absolute location, and the dash lines represent the location of the flame front. Regarding the order of minor species mole fraction, OH mole fraction was large, H mole fraction was followed, and O mole fraction was less in the stoichiometric N₂O/CH₄ flame. In the case of the fuel-lean conditions, however, OH mole fraction was still large, but O mole fraction placed second, and H mole fraction was less. On the other hand, in the case of the fuel-rich N₂O/CH₄ flame, H mole fraction was increased, but OH and O mole fraction were decreased. In the case of the stoichiometric N_2O/CH_4 flame, the numerical results indicated that the overall net reaction rate of R761 was 1.62×10⁻³ mol/cm²-s (R760: 1.00×10⁻³ mol/cm²s), leading to the consumption of N₂O through H atom and the yield of species N2 and OH. While the N2O/CH4 mixture shifted to fuel-lean condition, the overall net reaction rate of R760 was increased to 1.15×10⁻³ mol/cm²-s (R761: 1.55×10⁻³ mol/cm²-s), re-

Fig. 9. The distributions of minor species (H, O, and OH) mole fraction at various equivalence ratios for the N_2O/CH_4 flame.

sulting into an increase of O atom concentration and meantime exceeding the overall amount of H mole fraction. In the meantime, a lack of N_2O in fuel-rich conditions contributed to further reduce

species N_2O and O atom, resulting in reducing OH radical but increasing H atom.

Figures 10 and 11 show the reaction pathway for the N_2O/CH_4 flame at fuel-lean ($\phi = 0.8$) and fuel-rich ($\phi = 1.2$) conditions, respectively. The reaction pathway for the fuel-lean N₂O/CH₄ flame was similar to that for the stoichiometric N₂O/CH₄ flame. The NO production through R762 and reverse R667, which are the N2O route, was enhanced. Also, the NO formation through the HNOintermediate route was enhanced. Comparing the mole fraction of minor species for both fuel-lean and stoichiometric conditions, as shown in Fig. 9, the mole fraction of O for fuel-lean condition increased, but the mole fractions of H decreased. Therefore, the increase of the mole fraction of O atom contributed to enhancing the reaction of R762. In addition, the consumption of NO through reverse R672 (the thermal route) was enhanced, but reverse R679 (the NNH-intermediate route) and reverse R674 (the thermal route) were reduced. For the fuel-rich N₂O/CH₄ flame, as shown in Fig. 11, N₂ was converted to NNH through reverse R678 and reverse R681, which are the NNH-intermediate route. For the NO formation through the N₂O route, the reaction of R762 became weak due to the reduction of O atom mole fraction. In addition, the magnitude of reverse R672, which led NO convert back to N₂, was reduced. Figure 12 shows the reaction pathway diagram of NO formation for the fuel-rich N₂O/CH₄ flame at $\phi = 1.7$ with strain rate = 80 s⁻¹. For high equivalence ratio, the reactions of species N to species NO via R672 and R673, which are involved in the thermal route, became forward reactions to produce NO. It is indicated that the thermal route not only plays the role of NO consumption but also NO formation in extreme fuel-rich N₂O/CH₄ flames. Also, the formation of NO through the N₂O route (reverse R667 and R762) and HNO-intermediate route (reverse R720) was reduced, compared with the N₂O/CH₄ flame at $\phi = 1.2$. Although some of the reactions in the thermal route played the vital role of NO formation, the N₂O route was still predominant for NO formation.

Fig. 10. The reaction pathway diagram of NO formation for the fuel-lean N₂O/CH₄ flame at $\phi = 0.8$.

Fig. 11. The reaction pathway diagram of NO formation for the fuel-rich N₂O/CH₄ flame at $\phi = 1.2$.

Fig. 12. The reaction pathway diagram of NO formation for the fuel-rich N₂O/CH₄ flame at $\phi = 1.7$ with strain rate = 80 s⁻¹.

Figures 13 and 14 show the reaction pathway diagram of the prompt route for stoichiometric and fuel-rich ($\phi = 1.7$) conditions with strain rate = 80 s⁻¹ N₂O/CH₄ flame. For the stoichiometric N₂O/CH₄ flame, reverse R1011 (CN + N₂O \rightarrow NCN + NO) was the dominant reaction for NO formation. The reaction pathway diagram of the prompt route can be approximately divided into three categories: (1) N₂ \rightarrow CN \rightarrow NCN, NO (in terminal) \rightarrow N₂; (2)

 $CN \rightarrow NCN$, NO (in terminal) \rightarrow NO, CN; (3) $N_2 \rightarrow CN \rightarrow NCN$, NO (in terminal) $\rightarrow N \rightarrow N_2$. First, N_2 was reacted with C_2 to form CN through R988 ($C_2 + N_2 \rightarrow 2CN$), then N_2O was reacted with CN to form NO and NCN through reverse R1011, NCN was sequentially converted back to N_2 through reverse R944 (H + NCN \rightarrow CH + N_2) and R1002 (NCN + M \rightarrow C + $N_2 +$ M). Second, CN was reacted to form NO and NCN through reverse R1011, then NCN

Fig. 13. The reaction pathway diagram of the prompt route for the N₂O/CH₄ flame at $\phi = 1$.

Fig. 14. The reaction pathway diagram of the prompt route for the N_2O/CH_4 flame at $\phi = 1.7$ with strain rate = 80 s⁻¹.

was reacted with O atom to form NO and CN through R1006 (NCN + O \rightarrow CN + NO). In addition, NCN was also reacted with OH to form NO and HCN through R1009 (NCN + OH \rightarrow HCN + NO). Third, N₂ was reacted to form CN and then form NCN and NO, which was similar to category 1. Sequentially, NCN was reacted with H and OH through R1004 (NCN + H \rightarrow HCN + N) and R1005

(NCN + H \rightarrow HNC + N), respectively. Ultimately, N atom was converted back to N_2 through R954 (CN + N \rightarrow C + N_2). For high equivalence ratio condition, as shown in Fig. 14, the reaction pathway of the prompt route was similar to that for the stoichiometric N_2O/CH_4 flame. Most of the reactions were reduced, while the reaction of converting NCN to N_2 (reverse R944) was enhanced

Fig. 15. Contributions of NO production rates at various equivalence ratios for N₂O/CH₄ flames through (a) five NO formation route and (b) only prompt route.

due to the significant concentration of H atom in high equivalence ratio conditions. In addition, the reaction of NCN to HNC and N (R1005) became a reverse reaction (HNC + N \rightarrow NCN + H).

Figure 15(a) shows the contributions of NO production rate based on particular NO formation routes at various equivalence ratios of the N₂O/CH₄ flame. The positive value represents the support of NO production, but negative value represents the support of NO consumption. In general, the main NO formation derives from the N₂O and HNO-intermediate routes, while the NO consumption came from the thermal route and NNH-intermediate routes. For NO formation, the N₂O route was predominant at the fuel-lean condition. However, while the equivalence ratio of N₂O/CH₄ flame changed to fuel-rich condition, the dominance of the N₂O route was reduced due to a lack of N₂O. For NO consumption, the consumption of NO through the thermal route had a similar tendency of the N₂O route, while it decreased rapidly at an extreme fuel-rich condition ($\phi = 1.7$). As discussed in Fig. 12, the reactions of species N to species NO via R672 and R673 became forward reactions to produce NO. Figure 15(b) shows NO production through prompt route at various equivalence ratios for N₂O/CH₄ flame. It is known that the formation of prompt-NO is significant in fuel-rich conditions due to abundant CH radicals. Indeed, the production rate of NO was increased with increasing equivalence ratio until it reached the fuel-rich condition ($\phi = 1.2$). It had a significant decrease in the extreme fuel-rich condition ($\phi = 1.7$), as shown in Fig. 15(b). In the reaction pathway diagram of the prompt route at the extreme fuel-rich condition, as shown in Fig. 14, the overall net reaction rate of the dominant reaction of NO formation (R1006, R1010, and reverse R1011) did not increase with increasing equivalence ratio, even though reverse R944 was enhanced. It is indicated that the prompt-NO formation is dominated by species of N₂O instead of CH radical in the extreme fuel-rich N₂O/CH₄ flame.

4. Conclusion

The role of N₂O and equivalence ratio of N₂O/CH₄ mixture on NO formation characteristics were investigated by employing a one-dimensional OPPDIF program with a detailed reaction mechanism. The flame structures, NO reaction pathways, and NO formation routes were discussed. Results showed that the flame temperature and the mole fraction of OH and NO for the $\mathrm{N_2O}/\mathrm{CH_4}$ flame are higher than those for the $N_2/O_2/CH_4$ flame. The heat from N₂O decomposition influenced the flame temperature in N₂O/CH₄ premixed flames, then resulted in high flame temperature. Regarding the mechanism of NO formation, the dominant routes of NO formation are distinct in both stoichiometric N₂/O₂/CH₄ and N₂O/CH₄ flames. NO is mainly produced from N₂ through the thermal route and from HNO through the HNO-intermediate routes for the $N_2/O_2/CH_4$ flame. On the contrary, NO formation mainly comes from N₂O through the N₂O route and the HNO-intermediate route in the N₂O/CH₄ flame, whereas the thermal routes alter to the primary chemical mechanism of NO consumption. Even though N₂O/CH₄ flames demonstrated higher temperatures than $N_2/O_2/CH_4$ flames due to N_2O decomposition, the thermal route did enhance and dominate in NO consumption instead of NO formation.

The effects of equivalence ratios of N₂O/CH₄ flames on NO formation were analyzed at fuel-lean, stoichiometric, and fuelrich conditions. The overall net reaction rate of R761 was 1.62×10^{-3} mol/cm²-s (R760: 1.00×10^{-3} mol/cm²-s), leading to the consumption of N₂O through H atom and the yield of species N₂ and OH. While the overall net reaction rate of reaction of R760 was increased to 1.15×10^{-3} mol/cm²-s in fuel-lean condition (R761: 1.55×10^{-3} mol/cm²-s in stoichiometric condition), resulting into the increase of O atom concentration and meantime exceeding the overall amount of H mole fraction. The reaction pathway for the fuel-lean N₂O/CH₄ flame is similar to that for the stoichiometric N₂O/CH₄ flame. In comparing the reaction pathway of the fuel-lean and stoichiometric N₂O/CH₄ flames, The NO production through the reaction of R762, which is the N₂O route, is enhanced due to the increase of the mole fraction of O atom. Also, the NO formation through the HNO-intermediate route was enhanced. On the other hand, the thermal route becomes forward reactions to produce NO for the N₂O/CH₄ flame at $\phi = 1.7$ with strain rate = 80 s⁻¹. It is indicated that the thermal route not only plays the role of NO consumption but also NO formation in an extreme fuel-rich N₂O/CH₄ flame. Although some of the reactions in the thermal route play the vital role of NO formation for the extreme fuel-rich condition, the N₂O route is still predominant for NO formation. Regarding the reaction pathway of the prompt route, it can be approximately divided into three categories: (1) $N_2 \rightarrow CN \rightarrow NCN$, NO (in terminal) \rightarrow N₂; (2) CN \rightarrow NCN, NO (in terminal) \rightarrow NO, CN; (3) $N_2 \rightarrow CN \rightarrow NCN$, NO (in terminal) $\rightarrow N \rightarrow N_2$.

Results show that the main NO formation comes from the N₂O route and the HNO-intermediate routes, while NO consumption associates with the thermal and the NNH-intermediate routes. For NO formation, the N₂O route was predominant at the fuel-lean condition. However, while the equivalence ratio of N₂O/CH₄ flame changed to fuel-rich condition, the dominance of the N₂O route was reduced due to a lack of N₂O. For NO consumption, the consumption of NO through the thermal route has a similar tendency of the N₂O route, while it decreased rapidly in the extreme fuel-rich condition (ϕ = 1.7). The production rate of NO through the prompt route was increased with increasing equivalence ratio until it reached ϕ = 1.2. It had a significant decrease in the extreme fuel-rich condition (ϕ = 1.7). It is indicated that the prompt-NO formation is dominated by species of N₂O instead of CH radical in the extreme fuel-rich N₂O/CH₄ flame.

Declaration of Competing Interest

All authors declared that: (i) no support, financial or otherwise, has been received from any organization that may have an interest in the submitted work; and (ii) there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgments

Financial support for this work was provided by the Ministry of Science and Technology (Republic of China, Taiwan) under grant numbers MOST 106-2923-E-006-003-MY3, MOST 108-2628-E-006-008-MY3, and MOST 109-2221-E-006-037-MY3. The authors wish to thank Dr. Guan-Bang Chen for numerical assistance. Computer time and numerical packages provided by the National Center for High-Performance Computing, Taiwan (NCHC Taiwan), are gratefully acknowledged.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.combustflame.2020.10. 002.

References

- [1] G. Cai, W. Sun, J. Fang, M. Li, Y. Cong, Z. Yang, Design and performance characterization of a sub-Newton N₂O monopropellant thruster, Aerosp. Sci. Technol. 23 (2012) 439–451.
- [2] F. Shan, L. Hou, Y. Piao, Combustion performance and scale effect from N₂O/HTPB hybrid rocket motor simulations, Acta Astronaut. 85 (2013) 1–11.
 [3] C. Carmicino, F. Scaramuzzino, A.R. Sorge, Trade-off between paraffin-based
- [3] C. Carmicino, F. Scaramuzzino, A.R. Sorge, Trade-off between paraffin-based and aluminium-loaded HTPB fuels to improve performance of hybrid rocket fed with N₂O, Aerosp. Sci. Technol. 37 (2014) 81–92.
- [4] M. Galle, D. Agar, O. Watzenberger, Thermal N₂O decomposition in regenerative heat exchanger reactors, Chem. Eng. Sci. 56 (2001) 1587–1595.
- [5] Y.-H. Li, G.-B. Chen, Y.-C. Lin, Y.-C. Chao, Effects of flue gas recirculation on the premixed oxy-methane flames in atmospheric condition, Energy 89 (2015) 845–857.
- [6] G.-B. Chen, Y.-H. Li, T.-S. Cheng, Y.-C. Chao, Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion, Energy 55 (2013) 564–570.
- [7] J.-H. Park, J.-W. Ahn, K.-H. Kim, Y.-S. Son, Historic and futuristic review of electron beam technology for the treatment of SO₂ and NOx in flue gas, Chem. Eng. J. 355 (2019) 351–366.
- [8] J. Jayachandran, A. Lefebvre, R. Zhao, F. Halter, E. Varea, B. Renou, F.N. Egolfopoulos, A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations, Proc. Combust. Inst. 35 (2015) 695–702.
- [9] E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH₄-NH₃-air premixed flames, Combust. Flame 187 (2018) 185–198.
- [10] E. Hu, X. Li, X. Meng, Y. Chen, Y. Cheng, Y. Xie, Z. Huang, Laminar flame speeds and ignition delay times of methane-air mixtures at elevated temperatures and pressures, Fuel 158 (2015) 1–10.
- [11] E. Dabora, Effect of NO_2 on the ignition delay of CH_4 -air mixtures, Combust. Flame 24 (1975) 181–184.
- [12] K Maruta, M. Yoshida, Y. Ju, T. Niioka, Experimental study on methane-air premixed flame extinction at small stretch rates in microgravity, Symp. (Int.) Combust. 26 (1996) 1283–1289.
- [13] C. Pantano, Direct simulation of non-premixed flame extinction in a methane–air jet with reduced chemistry, J. Fluid Mech. 514 (2004) 231–270.
- [14] O.A. Powell, C. Dreyer, P. Papas, Laminar flame speeds of propane-nitrous oxide mixtures, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, the American Institute of Aeronautics and Astronautics (2009), p. 992.
- [15] O. Powell, J. Miller, C. Dreyer, P. Papas, Characterization of hydrocarbon/nitrous oxide propellant combinations, 46th AIAA Aerospace Sciences Meeting and Exhibit, the American Institute of Aeronautics and Astronautics (2008), p. 999.
- [16] O. Powell, P. Papas, C. Dreyer, Laminar burning velocities for hydrogen-, methane-, acetylene-, and propane-nitrous oxide flames, Combust. Sci. Technol. 181 (2009) 917–936.
- [17] Z. Qin, V.V. Lissianski, H. Yang, W.C. Gardiner, S.G. Davis, H. Wang, Combustion chemistry of propane: a case study of detailed reaction mechanism optimization, Proc. Combust. Inst. 28 (2000) 1663–1669.
- [18] M.T. Allen, R.A. Yetter, F.L. Dryer, High pressure studies of moist carbon monoxide/nitrous oxide kinetics, Combust. Flame 109 (1997) 449–470.
- [19] U. Pfahl, M. Ross, J. Shepherd, K. Pasamehmetoglu, C. Unal, Flammability limits, ignition energy, and flame speeds in H₂-CH₄-NH₃-N₂O-O₂-N₂ mixtures, Combust. Flame 123 (2000) 140–158.
- [20] W. Wang, H. Zhang, Laminar burning velocities of C₂H₄/N₂O flames: experimental study and its chemical kinetics mechanism, Combust. Flame 202 (2019) 362–375.
- [21] H. Wang, A. Laskin, A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures, Progress Report for an AFOSR New World Vista Program, (1998).
- [22] C.R. Group, The San Diego mechanism: chemical kinetic mechanisms for combustion applicationsMechanical and Aerospace Engineering (Combustion Research), California, University of 2014 athttp://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
- [23] R. Mével, J. Shepherd, Ignition delay-time behind reflected shock waves of small hydrocarbons-nitrous oxide (-oxygen) mixtures, Shock Waves 25 (2015) 217–229.
- [24] T. Newman-Lehman, R. Grana, K. Seshadri, F. Williams, The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames, Proc. Combust. Inst. 34 (2013) 2147–2153.
- [25] G.T. Linteris, M.D. Rumminger, V.I. Babushok, Premixed carbon monoxide–nitrous oxide–hydrogen flames: measured and calculated burning velocities with and without Fe(CO)₅, Combust. Flame 122 (2000) 58–75.
- [26] L. Sze, C. Cheung, C. Leung, Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design, Combust. Flame 144 (2006) 237–248.
- [27] Y. Choy, H. Zhen, C. Leung, H. Li, Pollutant emission and noise radiation from open and impinging inverse diffusion flames, Appl. Energy 91 (2012) 82–89.
- [28] A. Kotb, H. Saad, A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flames, Int. J. Therm. Sci. 109 (2016) 362–373.
- [29] K. Yamamoto, S. Kato, Y. Isobe, N. Hayashi, H. Yamashita, Lifted flame structure of coannular jet flames in a triple port burner, Proc. Combust. Inst. 33 (2011) 1195–1201.

- [30] G.J. Rørtveit, J.E. Hustad, S.-C. Li, F.A. Williams, Effects of diluents on NOx formation in hydrogen counterflow flames, Combust. Flame 130 (2002) 48-61.
- (31) A.A. Konnov, I. Dyakov, Nitrous oxide conversion in laminar premixed flames of CH₄+ O₂+ Ar, Proc. Combust. Inst. 32 (2009) 319–326.
 [32] P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion, Prog. Energy Combust. Sci. 67 (2018) 31–68.
- [33] H.-Y. Shih, J.-R. Hsu, Computed NOx emission characteristics of opposed-jet
- [33] H.-Y. Shih, J.-R. Hsu, Computed NOx emission characteristics of opposed-jet syngas diffusion flames, Combust. Flame 159 (2012) 1851–1863.
 [34] A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: a Fortran program for computing opposed-flow diffusion flames, Sandia National Labs, 1997.
 [35] S. Park, Y. Kim, Effects of nitrogen dilution on the NOx formation characteristics of CH₄/CO/H₂ syngas counterflow non-premixed flames, Int. J. Hydrogen Energy 42 (2017) 11945–11961.