太陽能板結合熱泵複合式系統之性能分析與優化

碩士論文
2017 - 06

碩士生: 高瑋駿

畢業年分: 2017年6月

論文名稱: 太陽能板結合熱泵複合式系統之性能分析與優化 (中文) / Performance analysis and optimization of solar thermal and heat pump combi-system

中文摘要: 

現今關於太陽能結合熱泵複合式系統之研究,主要致力於探討系統的配置以及天氣因素之影響。本研究建立了一套實驗室等級之太陽能複合式系統於台南市,並將監測感應器安裝於太陽能複合式系統之實驗設備上,並使用此套設備進行實驗數據之監測。此套太陽能複合式系統可以進行三種不同模式之操作,分別為太陽能熱水系統、熱泵熱水系統以及太陽能結合熱泵之複合式系統。此外將模擬軟體TRNSYS導入本研究中,個別針對太陽能熱水系統、熱泵系統以及太陽能複合式系統進行模擬,最後將模擬與實驗結果進行對比與驗證,並且確認及修正TRNSYS模組中相對應之元件參數,以及環境參數之設定,以及針對太陽能熱水系統、熱泵系統以及太陽能複合式系統的概念與運轉模式,進行多項議題的系統模擬,後續使用驗證完成之模擬模組進行三種不同系統之比較,分別為傳統式太陽能熱水系統,單桶太陽能複合式熱泵系統、雙桶太陽能複合式熱泵系統,並且為了確保每套系統在模擬期間有著相同之比較基準,所有系統之負載端皆為相同的設定,負載端之流量與溫度皆設定為一致的,並且為了探討天氣因素之影響,進行了兩個不同城市之模擬分析,分別為台北以及高雄,台北代表亞熱帶氣候之環境,高雄則代表著熱帶氣候之環境。模擬結果顯示,雙桶太陽能複合式系統不論在台北或是高雄都有著較低的電力消耗以及操作成本,後續探討太陽能複合式系統之設備成本,進行回收年限之評估,用以判斷系統之經濟可行性。為了更進一步的探討天氣對於太陽能複合式系統之影響性,進行了太陽能複合式系統在五個不同地區與氣候條件之分析,分別為台南、里斯本、香港、大阪、馬德里,台南代表熱帶氣候、里斯本代表地中海型氣候、香港代表亞熱帶氣候、大阪代表夏雨型暖溼氣候、馬德里代表大陸性氣候,並且將田口方法導入模擬中,進行太陽能複合式系統之優化與分析,藉由田口方法,找出在五種不同氣候條件下的最佳參數組合以及不同因子對於系統性能之影響程度。結果顯示,在不同地區下每項因子對於系統效能之影響程度皆不相同,影響程度最大之因子在不同系統相同地區下也不相同,但影響程度最大之因子則在每個地區皆為相同。經由這些探討,可以幫助我們更了解氣候條件對於太陽能複合式系統之效能影響。

英文摘要: 

In the present research, combinations of solar collectors and air-source heat pumps for domestic hot water (DHW) are addressed in terms of hydraulic layout and climate conditions. This study attempts to install some monitoring sensor to monitor experimental data. The lab-scale solar combisystem was established and monitored in Tainan city, Taiwan. The solar combisystem can run in three modes, solar hot water system, heat pump hot water system, as well as solar combisystem, respectively. In addition, a TRNSYS software was engaged to simulate and examine the heating capacity of the domestic hot water systems with various hydraulic layouts. A demonstration site of solar collector and heat pump combisystem was utilized to verify the numerical results. The corresponding parameters of TYNSYS module were also discussed. To compare conventional solar domestic hot water (SDHW) system, single-tank solar combisystem, and dual-tank solar combisystem. Three different models were simulated using TRNSYS software after validating simulation model. All of the systems had the same load profile and delivered DHW at a constant temperature. This guaranteed that each system delivered the same amount of energy for the entire simulation period, thereby ensuring a common basis for comparison. To determine the effect of climate conditions, two different cities in Taiwan were simulated: Taipei represented subtropical climate, Kaohsiung represented tropical climate. Results showed that the dual-tank solar combisystem employed in both Taipei and Kaohsiung had the lowest electrical consumption and operating cost and the incremental capital costs of the solar combisystems were considered, and realistic payback periods were calculated to determine economic feasibility. Furthermore, in order to discuss the effect of climate conditions, the Taguchi method was employed to optimize and analyzed the solar combisystem systems in various climate conditions and locations, Tainan represented tropical monsoon climate, Lisbon represented Mediterranean climate, Hong-Kong represented subtropical monsoon climate, Osaka represented humid subtropical climate and Madrid represented Continental climate. The optimum set of parameters and the contribution of each parameters of solar combisystems in five different locations were found out through the Taguchi method. The results show that the effect level of each parameters of solar combisystems on performance were different in different region, but the most significant parameter was the same in all region. The results also reveal that the most significant parameter was different in varied solar combisystem. The results facilitate us to know the effect of climatic conditions on the performance of solar combisystems.

研究成員

  • 高瑋駿

指導老師

  • 李約亨

Back To Top