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Introduction-Diffusion flame
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NDF IDF

[Kumfer et al., Combust. Flame (2008)]

 According to the different feeding pattern of the fuel and

oxidizer
Normal diffusion flame (NDF)-fuel jet is issued into oxidizer.

 Inverse diffusion flame (IDF)-inner oxidizer jet is surrounded by

an outer fuel jet.



Introduction-Diffusion flame
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NDF IDF

 Mikofski et al. 2006 - Inverse diffusion flame height predictions

using modified Roper’s analysis for circular port burners agreed

with measured reaction zone heights.

 Johnson and Sobiesiak 2011 - Numerical simulations suggest

that when the mixture upstream of the partially premixed flame

reaches Φ≈1, it propagates upstream and stabilizes closer to the

burner as an IDF.



Introduction - Oxy-enriched combustion
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 Leo et al. 2007 - The concentration of OH∗ and CH∗ increase as

oxygen content increases. Besides, the excitation mechanism of

OH and CH is thermal mechanism.

 Yepes et al. 2013 - The radicals OH and O grow with oxygen

content, the laminar burning velocity increase by approximately

25% for an enrichment level of 4%.



If the oxygen concentration exceed 21%, it call oxy-enriched combustion.

Moreover, the limit of the oxygen concentration is 100%, namely pure oxygen

combustion.

 Advantages
Reduce the total amount of oxidizer

 Increase the flame temperature

Save energy

Reduce pollutant emission

 Disadvantages
Higher cost

Low reliability of equipment system

Introduction - Oxy-enriched combustion
6



 Nitrous oxide (N2O) is often used as the oxidizer propellant for

propulsion systems, it is so-called “green propellant”

 Nitrous oxide (N2O, so call laughing gas)

 Total reaction step：N2O → N2 +
1
2
O2 + 82

MJ
kmol

 Temperature of self-decomposition：520°C

 Temperature of maintained self-decomposition ：1000°C

 Adiabatic flame temperature ：1640°C

Introduction - Nitrous oxide
7



Introduction -Nitrous-oxide flame
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 Vanderhoff et al. 1986 – They studied the H2/N2O premixed flame,

the equivalence ratio changed from lean to stoichiometric,

temperature distribution and NO, O2, N2, and OH concentration

distributions were obtained for preliminary results.

 Newman-Lehman et al. 2013 - In CH4/N2O and C2H6/N2O

opposed diffusion flames, the flame suppression effect caused by

N2O addition is attributed to the relationship between reaction step

3H2 + O2 = 2H2O + 2H and the reaction step N2O + H2 = N2 + H2O.



Introduction - The effect of diluent addition
9

McLintock et al. 1968 - When using carbon dioxide as the diluent,

he reported a strong soot suppressing effect, but when using

helium there was virtually no noticeable effect on soot suppression.

 Kailasanathan et al. 2013 - The carbon dioxide-diluted flame is

the coolest, with a peak temperature of 1760 K and the helium-

diluted flame is the hottest, with a peak temperature of 2140 K.



Introduction - Pollutant emission
10

 Rørtveit et al. 2002 – Adding diluent on the opposed hydrogen

flame, the addition of He and CO2 effectively reduced the NO

content at similar temperatures condition.

 Yamamoto et al. 2011 – They studied the effect of the lifted flame

on pollutant emission. The NOx content decreases when the

external flame lift.



Motivation and Objective
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 Nitrous oxide is a strong oxidizer and widely used in industrial applications such as rocket

propulsion, internal combustion engines.

 The addition of diluent is not only important for the combustion phenomenon, but also more

likely to achieve pollution emission control.

Flame behavior 

 Flame configuration

 Pollutant emission

 The effect of diluent 

addition

Investigation

Small-scale triple port burner

Dilute with Ar,He,CO2



Experimental Apparatus and Condition
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ID = 0.15 ; 0.4 ; 5 cm

OD = 0.21 ; 0.5 ; 5.3 cm

L = 85 mm 

[Lin, Master thesis. NCKU (2013)]



Experimental Apparatus and Condition
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 Ω =
XDiluent

XN2O
∙ 100% R =

V
1

V
2

 Fixed V2 = 25 ,V3 = 9.12 (cm/s)

 Analyze pollutant emission by

gas analyzer.



Theoretical Model
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 Triaxial Burke-Schumann flame [Ko et al., Combust. Sci. Technol. (2005)]

 Including of the effect of axial diffusion and unequal stream velocities.

 Reaction for the diffusion flame is one step overall.

 Le=1, Fick’s law for gas transport.

 The buoyancy effect and shear force are neglected.

 Steady, laminar, constant pressure and obey Ideal Gas equation for Jet.

 Governing equations

 In cylindrical coordinate system, coupling conservation of mass and energy equations.

Pe
𝜕 𝛾𝑖
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 Using the method of separation of variables with boundary conditions, the general solution 
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Modified Theoretical Model
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 General solution

𝛾𝐹𝑂 = 𝛾𝐹𝑇 − 𝛾𝑂𝑇 = ෨𝑌𝐹 − ෨𝑌𝑂 = 𝐵0,𝑀 − 𝐴0,𝑀

+෍
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𝜂

 Definition of equivalence ratio

∅ ≡
ൗ𝑂 𝐹 𝑠𝑡𝑜𝑖𝑐.

ൗ𝑂 𝐹

𝑌𝑂
𝑌𝐹

=

𝑁𝑂𝑀𝑂
𝑁𝐹𝑀𝐹 𝑠𝑡𝑜𝑖𝑐.

∅



Modified Theoretical Model
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 Definition of dimensionless mass fraction

෨𝑌𝑗 ≡
𝑌𝑗/𝑀𝑗 ν𝑗

′′ − ν𝑗
′

𝑌𝐹/𝑀𝐹 ν𝐹
′′ − ν𝐹

′

𝑌𝑂
𝑀𝑂 𝜐𝑂

′′ − 𝜐𝑂
′

𝑌𝐹
𝑀𝐹 𝜐𝐹

′′ − 𝜐𝐹
′

= ෨𝑌𝑂 =

𝑁𝑂𝑀𝑂
𝑁𝐹𝑀𝐹 𝑠𝑡𝑜𝑖𝑐.

𝑀𝑂 𝜐𝑂
′′ − 𝜐𝑂

′

∅
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′

[Ko et al., Combust. Sci. Technol. (2005)]



 Modified general solution

O = N2O, F = CH4

෨𝑌𝑂 =
1

∅

෨𝑌𝐹 = 1

Modified Theoretical Model 
17

1 −
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2

2
𝜂

∅ = 0.8、1、1.2



Numerical Simulation Method
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 The CHEMKIN PRO, OPPDIF program, is used for numerical simulation.

 In order to understand the effects of diluent addition, three kinds of artificial

species are created for simulation, namely N2O(A), Ar(A), CO2(A).

No dilution

With I effect

With IT effect

With ITC effect

Inert effect 

Thermal/Diffusion effect 

Chemical effect 

Case (ITC) 80% N2O +20% Ar

Case (IT) 80% N2O +20% Ar(A)

Case (I) 80% N2O +20% N2O(A)

Base case 100% N2O

[Shih, Combust.T and M (2013)]
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Results and Discussion－Flame Configuration 

 The IDFs form at some certain Ω and R.

 Because the flow field velocity of partially-premixed flame (PPF) and flame

propagation speed can not approach to balance.



Results and Discussion－Flame Configuration (Ar) 
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Results and Discussion－Flame Configuration (Ar)
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Results and Discussion－Flame Configuration (He)
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Results and Discussion－Flame Configuration (He)

Similar to Ar condition, it has a square-soot zone but it narrow down with

increasing R.
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Results and Discussion－Flame Configuration (CO2) 
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Results and Discussion－Flame Configuration (CO2) 

 Increasing the CO2 concentration, the secondary flame becomes apparently. It

is conjectured that the CO from pyrolysis of CO2 re-react with N2O, resulting in

a CO flame.



Results and Discussion－Flame Configuration
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Strain rate：200 s-1 Strain rate：400 s-1CO2Ar He



Results and Discussion－Flame Shape Prediction
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Ω = 0%



Results and Discussion－Flame Shape Prediction (Ar)
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Ω = 20%

Ω = 40%



Results and Discussion－Flame Shape Prediction (Ar)
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Ω = 60%



Results and Discussion－Flame Shape Prediction (He)
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Ω = 20%

Ω = 40%



Results and Discussion－Flame Shape Prediction (He)
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Ω = 60%

Helium addition do not affect the velocity ratio of IDF formation.



Results and Discussion－Flame Shape Prediction (CO2)
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Ω = 20%

Ω = 40%



Results and Discussion－Flame Shape Prediction (CO2)
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Ω = 60%



Results and Discussion－Flame Shape Prediction
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40% Ar

 The step of IDF formation :

 Normal diffusion formation.

 The branch of fuel-rich, stoichiometric and fuel-lean for inner flame form

sequentially.

 The branch of fuel-rich, stoichiometric and fuel-lean for inner and outer

flame form an envelope sequentially and then form an opened-tip IDF.
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Results and Discussion－Pollutant Emission

Ω=0%, R=0~10
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Results and Discussion－Pollutant Emission (Ar)

Ω=40%, R=0~10Ω=20%, R=0~10 Ω=60%, R=0~10
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Results and Discussion－Pollutant Emission (He)

Ω=40%, R=0~10Ω=20%, R=0~10 Ω=60%, R=0~10
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Results and Discussion－Pollutant Emission (CO2)

Ω=40%, R=0~10Ω=20%, R=0~10 Ω=60%, R=0~10

 The formation of CO:

 Temperature decrease result in incomplete combustion reaction

 CO2 convert to CO
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Results and Discussion – Flame structure (Ar)

Ω = 20%

Base case Case I Case IT Case ITC
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Results and Discussion – Flame structure (Ar)

Ω = 60%

Base case Case I Case IT Case ITC
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Results and Discussion – Flame structure (Ar)

 The effects of Ar addition on flame structure

 Inert effect mainly affects the decrease of intermediate products and flame

temperature.

 Thermal/diffusion effect affects the increase of intermediate products and

flame temperature.

 Chemical effect dominate inhibition of C2H2 at high Ar concentration.
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Results and Discussion – Flame structure (CO2)

Ω = 20%

Base case Case I Case IT Case ITC
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Results and Discussion – Flame structure (CO2)

Ω = 60%

Base case Case I Case IT Case ITC
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Results and Discussion – Flame structure (CO2)

 The effects of CO2 addition on flame structure

 Thermal/diffusion effect does not have much effect on the flame structure.

 Chemical effect mainly affects the decrease of intermediate products and

flame temperature.
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Results and Discussion – Flame Temperature

Ar CO2

20.8 kJ/kmol·K 37.2 kJ/kmol·K
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Results and Discussion – Pollutant Emission (Ar)
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Results and Discussion – Pollutant Emission (CO2)
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Results and Discussion – Flame Temperature & Pollutant Emission 

 The effects of diluent addition on flame temperature

Ar addition Flame temperature increase

Flame temperature decrease

T/D effect 

Inert effect 
CO2 addition

Chemical effect 

Inert effect 
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Results and Discussion – Flame Temperature & Pollutant Emission 

 The effects of diluent addition on pollutant emission

Ar addition NOX formation

CO formation

>40%  T/D effect 

CO2 addition
Chemical effect 

T/D effect

<40%  Inert effect 

<40%  I & C effect >40%  Chemical effect 



Results and Discussion – Mechanism of  NO Formation

50



Results and Discussion – Mechanism of  NO Formation
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Reaction number and reaction steps. 

Thermal route  

R178 N + NO = N2 + O 

R179 N + O2 = NO +O 

R180 N + OH = NO + H 

N2O-intermediate route  

R182 N2O + O = 2NO 

R183 N2O + H = N2 + OH 

R185 N2O +M = N2+O + M  

R199 NH + NO = N2O + H 

R228 NCO + NO = N2O + CO 

NNH-intermediate route  

R204 NNH = H + N2 

R205 NNH + M = N2 + H + M 

R208 NNH + O = NH + NO 

R209 NNH + H = H2 + N2 

HNO-intermediate route  

R212 H + NO + M = HNO + M 

R213 HNO + O = NO + OH 

R214 HNO + H = H2 + NO 

R215 HNO + OH = NO + H2O 

Prompt route  

R245 C + NO = CO + N  

R246 CH + NO = HCN + O 

R249 CH2 + NO = H + HNCO 

R255 CH3 + NO = HCN + H2O 

R274 HCCO + NO = HCNO + CO 

R283 N + CO2 = NO + CO 

 1 

 Thermal Route

 N2O-intermediate route

 NNH-intermediate route

 HNO-intermediate route

 Prompt route



Results and Discussion – Mechanism of  NO Formation
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Results and Discussion – Mechanism of  NO Formation
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CO2

Results and Discussion – Mechanism of  NO Formation
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Ar

 R182: N2O + O = 2NO

 R199: NH + NO = N2O + H

 R178: N + NO = N2 + O



Results and Discussion – Mechanism of  NO Formation
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20% Ar 60% Ar 20% CO2 60% CO2

 The O radical decrement rate of CO2

addition is larger than Ar addition.
R182: N2O + O = 2NO



Results and Discussion – Mechanism of  NO Formation
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Total concentration of species for different diluent. 

 O N N2 

20% CO2 0.0014 0.0000007 0.2979 

20% Ar 0.0035 0.0000016 0.344 

 1 

R178: N + NO = N2 + O

N radical concentration under Ar addition is higher than CO2 addition. It’s the

reason why the decrement rate of R178 production rate for CO2 is higher than

Ar .



Total concentration of species for different diluent. 

 NH H N2O 

20% CO2 0.00000074 0.0018 0.8 

40% CO2 0.00000051 0.00034 0.6 

60% CO2 0.00000035 0.000022 0.4 

 1 

Results and Discussion – Mechanism of  NO Formation
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R199: NH + NO = N2O + H

1. 20% ~ 40%

 H radical concentration drops sharply.

2. 40% ~ 60%

 NH radical concentration decrease.

CO2
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Conclusions

 In flame configuration, the flame types can be divided into five types

regardless of diluent addition, namely NDF, PPF, closed-tip IDF, opened-tip

IDF and liftoff edge flame.

 The step of IDF formation :

 Normal diffusion formation.

 The branch of fuel-rich, stoichiometric and fuel-lean for inner flame form

sequentially.

 The branch of fuel-rich, stoichiometric and fuel-lean for inner and outer

flame form an envelope sequentially and then form an opened-tip IDF

 It could effectively reduce the production of CO with the addition of He. In

addition, the CO2 addition enhance NOx formation. It is may because CO and

N2O reacts again.
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Conclusions 

 The effects of diluent addition on flame temperature

 The effects of diluent addition on pollutant emission
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Conclusions

 R182 : N2O + O = 2NO

 The O radical decrement rate of CO2 addition is larger than Ar addition.

 R178: N + NO = N2 + O

 N radical concentration under Ar addition is higher than CO2 addition. It’s

the reason why the decrement rate of R178 production rate for CO2 is

higher than Ar .

 R199: NH + NO = N2O + H

1. 20% ~ 40%

 H radical concentration drops sharply.

2. 40% ~ 60%

 NH radical concentration decrease.
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