

添加稀釋物對甲烷/一氧化二氮反置擴散火焰之燃燒特性 影響

Effects of Diluent Addition on Combustion Characteristics of Methane/Nitrous Oxide Inverse Diffusion Flame.

Reporter: Chun-Han Chen (陳俊翰)

Advisor: Yueh-Heng Li (李約亨)

Date: 2018/July/17

2018 Master Thesis Oral Defense

- According to the different feeding pattern of the fuel and oxidizer
 - > Normal diffusion flame (NDF)-fuel jet is issued into oxidizer.
 - Inverse diffusion flame (IDF)-inner oxidizer jet is surrounded by an outer fuel jet.

[Kumfer et al., Combust. Flame (2008)]

- **Mikofski** *et al.* 2006 Inverse diffusion flame height predictions using modified Roper's analysis for circular port burners agreed with measured reaction zone heights.
- Johnson and Sobiesiak 2011 Numerical simulations suggest that when the mixture upstream of the partially premixed flame reaches Φ≈1, it propagates upstream and stabilizes closer to the burner as an IDF.

- Leo et al. 2007 The concentration of OH* and CH* increase as oxygen content increases. Besides, the excitation mechanism of OH and CH is thermal mechanism.
- Yepes et al. 2013 The radicals OH and O grow with oxygen content, the laminar burning velocity increase by approximately 25% for an enrichment level of 4%.

If the oxygen concentration exceed 21%, it call oxy-enriched combustion. Moreover, the limit of the oxygen concentration is 100%, namely pure oxygen combustion.

Advantages

- Reduce the total amount of oxidizer
- ✓ Increase the flame temperature
- ✓ Save energy
- Reduce pollutant emission

Disadvantages

- ✓ Higher cost
- Low reliability of equipment system

- Nitrous oxide (N₂O) is often used as the oxidizer propellant for propulsion systems, it is so-called "green propellant"
- Nitrous oxide (N₂O, so call laughing gas)
 - ✓ Total reaction step : $N_2O \rightarrow N_2 + \frac{1}{2}O_2 + 82\left(\frac{MJ}{kmol}\right)$
 - ✓ Temperature of self-decomposition : $520^{\circ}C$
 - ✓ Temperature of maintained self-decomposition : 1000°C
 - ✓ Adiabatic flame temperature : 1640°C

- Vanderhoff et al. 1986 They studied the H₂/N₂O premixed flame, the equivalence ratio changed from lean to stoichiometric, temperature distribution and NO, O₂, N₂, and OH concentration distributions were obtained for preliminary results.
- Newman-Lehman *et al.* 2013 In CH₄/N₂O and C₂H₆/N₂O opposed diffusion flames, the flame suppression effect caused by N₂O addition is attributed to the relationship between reaction step $3H_2 + O_2 = 2H_2O + 2H$ and the reaction step N₂O + H₂ = N₂ + H₂O.

- McLintock et al. 1968 When using carbon dioxide as the diluent, he reported a strong soot suppressing effect, but when using helium there was virtually no noticeable effect on soot suppression.
- Kailasanathan et al. 2013 The carbon dioxide-diluted flame is the coolest, with a peak temperature of 1760 K and the helium-diluted flame is the hottest, with a peak temperature of 2140 K.

- Rørtveit et al. 2002 Adding diluent on the opposed hydrogen flame, the addition of He and CO₂ effectively reduced the NO content at similar temperatures condition.
- Yamamoto et al. 2011 They studied the effect of the lifted flame on pollutant emission. The NOx content decreases when the external flame lift.

- Nitrous oxide is a strong oxidizer and widely used in industrial applications such as rocket propulsion, internal combustion engines.
- The addition of diluent is not only important for the combustion phenomenon, but also more likely to achieve pollution emission control.

by

- Triaxial Burke-Schumann flame [Ko et al., Combust. Sci. Technol. (2005)]
 - > Including of the effect of axial diffusion and unequal stream velocities.
 - Reaction for the diffusion flame is one step overall.
 - Le=1, Fick's law for gas transport.
 - The buoyancy effect and shear force are neglected.
 - Steady, laminar, constant pressure and obey Ideal Gas equation for Jet.

Governing equations

> In cylindrical coordinate system, coupling conservation of mass and energy equations.

 $\operatorname{Pe}\frac{\partial(\gamma_i)}{\partial\eta} - \left[\frac{1}{\xi}\frac{\partial}{\partial\xi}\left(\xi\frac{\partial(\gamma_i)}{\partial\xi}\right) + \frac{\partial^2(\gamma_i)}{\partial\eta^2}\right] = 0 \quad , \quad \gamma_{FO} = \tilde{Y}_F - \tilde{Y}_O \quad ; \quad \gamma_{FT} = \tilde{Y}_F + \tilde{T} \quad ; \quad \gamma_{OT} = \tilde{Y}_O + \tilde{T}$

Using the method of separation of variables with boundary conditions, the general solution are obtained:

$$\begin{split} \boldsymbol{\xi} &\equiv \frac{r}{r_s} \quad , \quad \boldsymbol{\eta} \equiv \frac{z}{r_s} \\ 0 &= A_{0,3}' + \sum_{n=1}^{\infty} A_{n,3}' \frac{2}{\Phi_n J_0^2(\Phi_n)} J_0(\Phi_n \boldsymbol{\xi}_f) \exp\left(\frac{Pe - \sqrt{Pe^2 + 4\Phi_n^2}}{2} \boldsymbol{\eta}_f\right) \\ \text{where} \quad A_{0,3}' &= B_{0,3} - A_{0,3} = -\tilde{Y}_{3,j} \cdot \left(\frac{u_3}{u_2}\right) - c_1^2 \left[\tilde{Y}_{1,j} \cdot \left(\frac{u_1}{u_2}\right) + \tilde{Y}_{2,j}\right] + c_2^2 \left[\tilde{Y}_{2,j} + \tilde{Y}_{3,j} \left(\frac{u_3}{u_2}\right)\right] \\ A_{n,3}' &= B_{n,3} - A_{n,3} = c_2 J_1(c_2 \Phi_n) \left[\tilde{Y}_{2,j} + \tilde{Y}_{3,j} \left(\frac{u_3}{u_2}\right)\right] - c_1 J_1(c_1 \Phi_n) \left[\tilde{Y}_{1,j} \cdot \left(\frac{u_1}{u_2}\right) + \tilde{Y}_{2,j}\right] \end{split}$$

• General solution

$$\gamma_{FO} = \gamma_{FT} - \gamma_{OT} = \tilde{Y}_F - \tilde{Y}_O = B_{0,M} - A_{0,M} + \sum_{n=1}^{\infty} (B_{n,M} - A_{n,M}) \frac{2}{\phi_n J_0^2(\phi_n)} J_0(\phi_n \xi) \exp\left(\frac{Pe - \sqrt{Pe^2 + 4\phi_n^2}}{2}\eta\right)$$

• Definition of equivalence ratio

$$\phi \equiv \frac{\left(\frac{0}{F}\right)_{stoic.}}{\left(\frac{0}{F}\right)}$$

$$\frac{Y_O}{Y_F} = \frac{\left(\frac{N_O M_O}{N_F M_F}\right)_{stoic.}}{\emptyset}$$

• Definition of dimensionless mass fraction [Ko et al., Combust. Sci. Technol. (2005)]

$$\widetilde{Y}_j \equiv \frac{Y_j / M_j (\nu_j^{\prime\prime} - \nu_j^{\prime})}{Y_F / M_F (\nu_F^{\prime\prime} - \nu_F^{\prime})}$$

16

$$\frac{\frac{Y_{O}}{M_{O}(v_{O}''-v_{O}')}}{\frac{Y_{F}}{M_{F}(v_{F}''-v_{F}')}} = \tilde{Y}_{O} = \frac{\frac{\left(\frac{N_{O}M_{O}}{N_{F}M_{F}}\right)_{stoic.}}{M_{O}(v_{O}''-v_{O}')}}{\frac{\emptyset}{M_{F}(v_{F}''-v_{F}')}}$$

(M M)

Modified general solution

$$\tilde{Y}_O = N_2 O, F = CH_4$$

 $\tilde{Y}_O = \frac{1}{\phi}$
 $\tilde{Y}_F = 1$

$$1 - \frac{1}{\emptyset} = B_{0,M} - A_{0,M} + \sum_{n=1}^{\infty} \left(B_{n,M} - A_{n,M} \right) \frac{2}{\Phi_n J_0^2(\Phi_n)} J_0(\Phi_n \xi) \exp\left(\frac{Pe - \sqrt{Pe^2 + 4\Phi_n^2}}{2}\eta\right)$$
$$\emptyset = 0.8 \cdot 1 \cdot 1.2$$

- The CHEMKIN PRO, OPPDIF program, is used for numerical simulation.
- In order to understand the effects of diluent addition, three kinds of artificial species are created for simulation, namely N₂O(A), Ar(A), CO₂(A).

- The IDFs form at some certain Ω and R.
 - Because the flow field velocity of partially-premixed flame (PPF) and flame propagation speed can not approach to balance.

Results and Discussion - Flame Configuration (Ar)

Results and Discussion - Flame Configuration (Ar)

Results and Discussion - Flame Configuration (He)

 Similar to Ar condition, it has a square-soot zone but it narrow down with increasing R.

Results and Discussion - Flame Configuration (CO2)

 Increasing the CO₂ concentration, the secondary flame becomes apparently. It is conjectured that the CO from pyrolysis of CO₂ re-react with N₂O, resulting in a CO flame.

Results and Discussion - Flame Shape Prediction

Results and Discussion - Flame Shape Prediction (He)

Results and Discussion - Flame Shape Prediction (He)

31

• Helium addition do not affect the velocity ratio of IDF formation.

• The step of IDF formation :

- ✓ Normal diffusion formation.
- ✓ The branch of fuel-rich, stoichiometric and fuel-lean for inner flame form sequentially.
- ✓ The branch of fuel-rich, stoichiometric and fuel-lean for inner and outer flame form an envelope sequentially and then form an opened-tip IDF.

Results and Discussion - Pollutant Emission (He)

• The formation of CO:

✓ Temperature decrease result in incomplete combustion reaction

 \checkmark CO₂ convert to CO

 $\Omega = 20\%$

 \mathbf{S}

40

0

-0.9

-0.6

-0.3

0

Distance(cm)

0.3

0.6

0.9

0

-0.9

-0.6

-0.3

Distance(cm)

0.3

0.6

0.9

-0.6

-0.9

-0.3

0

Distance(cm)

0.3

0.6

0.9

-0.9

-0.6

-0.3

0.3

0

Distance(cm)

0.6

0.9

 $\Omega = 60\%$

• The effects of Ar addition on flame structure

- ✓ Inert effect mainly affects the decrease of intermediate products and flame temperature.
- Thermal/diffusion effect affects the increase of intermediate products and flame temperature.
- \checkmark Chemical effect dominate inhibition of C₂H₂ at high Ar concentration.

 $\Omega = 20\%$

Distance(cm)

Distance(cm)

Distance(cm)

Distance(cm)

 $\Omega = 60\%$

• The effects of CO₂ addition on flame structure

- ✓ Thermal/diffusion effect does not have much effect on the flame structure.
- Chemical effect mainly affects the decrease of intermediate products and flame temperature.

Results and Discussion – Pollutant Emission (Ar)

• The effects of diluent addition on flame temperature

The effects of diluent addition on pollutant emission

Reaction number and reaction steps.			
Thermal route			
R178	$N + NO = N_2 + O$		
R179	$N + O_2 = NO + O$		
R180	N + OH = NO + H		
N ₂ O-intermediate route			
R182	$N_2O + O = 2NO$		
R183	$N_2O + H = N_2 + OH$		
R185	$N_2O + M = N_2 + O + M$		
R199	$NH + NO = N_2O + H$		
R228	$NCO + NO = N_2O + CO$		
NNH-intermediate route			
R204	$NNH = H + N_2$		
R205	$NNH + M = N_2 + H + M$		
R208	NNH + O = NH + NO		
R209	$\mathbf{NNH} + \mathbf{H} = \mathbf{H}_2 + \mathbf{N}_2$		
HNO-intermediate route			
R212	H + NO + M = HNO + M		
R213	HNO + O = NO + OH		
R214	$HNO + H = H_2 + NO$		
R215	$HNO + OH = NO + H_2O$		
Prompt route			
R245	C + NO = CO + N		
R246	CH + NO = HCN + O		
R249	$CH_2 + NO = H + HNCO$		
R255	$CH_3 + NO = HCN + H_2O$		
R274	HCCO + NO = HCNO + CO		
R283	$N + CO_2 = NO + CO$		

• Thermal Route

- N₂O-intermediate route
- NNH-intermediate route
- HNO-intermediate route

• Prompt route

Results and Discussion – Mechanism of NO Formation

Results and Discussion – Mechanism of NO Formation

• The O radical decrement rate of CO₂ addition is larger than Ar addition.

R182: $N_2O + O = 2NO$

Total concentration of species for different diluent.				
	Ο	N	N_2	
20% CO ₂	0.0014	0.0000007	0.2979	
20% Ar	0.0035	0.0000016	0.344	

R178: $N + NO = N_2 + O$

 N radical concentration under Ar addition is higher than CO₂ addition. It's the reason why the decrement rate of R178 production rate for CO₂ is higher than Ar.

Total concentration of species for different diluent.					
	NH		Н	N ₂ O	
20% CO ₂	0.0000074		0.0018	0.8	
40% CO ₂	0.00000051		0.00034	0.6	
60% CO ₂	0.00000035		0.000022	0.4	

R199: NH + NO = N2O + H

1. 20% ~ 40%

Results and Discussion – Mechanism of NO Formation

✓ H radical concentration drops sharply.

2. 40% ~ 60%

✓ NH radical concentration decrease.

- In flame configuration, the flame types can be divided into five types regardless of diluent addition, namely NDF, PPF, closed-tip IDF, opened-tip IDF and liftoff edge flame.
- The step of IDF formation :
 - ✓ Normal diffusion formation.
 - ✓ The branch of fuel-rich, stoichiometric and fuel-lean for inner flame form sequentially.
 - ✓ The branch of fuel-rich, stoichiometric and fuel-lean for inner and outer flame form an envelope sequentially and then form an opened-tip IDF
- It could effectively reduce the production of CO with the addition of He. In addition, the CO₂ addition enhance NO_x formation. It is may because CO and N₂O reacts again.

• The effects of diluent addition on flame temperature

• The effects of diluent addition on pollutant emission

• $R182 : N_2O + O = 2NO$

 \checkmark The O radical decrement rate of CO2 addition is larger than Ar addition.

• *R178: N* + *NO* = *N2* + *O*

✓ N radical concentration under Ar addition is higher than CO2 addition. It's the reason why the decrement rate of R178 production rate for CO2 is higher than Ar .

• *R*199: *NH* + *NO* = *N*2*O* + *H*

- 1. 20% ~ 40%
 - \checkmark H radical concentration drops sharply.
- 2. 40% ~ 60%
 - \checkmark NH radical concentration decrease.

Thanks the support from NSC (National Science Council), Taiwan under the grant of NSC 106-2627-E-006-001.

李約亨教授實驗室 | ZAP LAB Zic and Partners Lab

As our circle of knowledge expands, so does the circumference of darkness surrounding it. — Albert Einstein

Thank you for attention

Yueh-Heng Li (Zic) 李約亨

Assistant Professor, Dept. Aeros. & Astros., NCKU, Taiwan

- yuehheng.li@gmail.com yueheng@mail.ncku.edu.tw
- ZAP Lab Website: http://59.125.238.48/zaplab/